Lecture 3 Aftermath of the First Stars

NAOKI YOSHIDA University of Tokyo

ADVANCED SUMMER SCHOOL 2019 "FIRST LIGHT"

First Blackholes

BH seed formation models

- Remnants of the first stars
 Primordial stars > 300 Msun
- · Direct collapse of a massive gas cloud

UV radiation driven model Turbulent collapse induced by streaming motions

Stellar collisions in dense star cluster

Chon & Latif 2017; Chon+ 2018

Supersonic gas streams drive BH formation

A high-density region with $3-\sigma$ streaming velocity (90 km/s @ z=1089)

Star collision rate

The central star grows at a rate

$$\frac{\mathrm{d}m_r}{\mathrm{d}t} = N_{\mathrm{coll}}\,\delta m_{\mathrm{coll}}$$

The collision rate is governed by 3-body binary formation

 $\dot{n}_{
m bf} \sim 10^{-3} rac{N_c}{t_{
m rlx}}$ where $t_{
m rlx}$ is the system relaxation time (Goodman 1989, Makino 1990, etc)

Then we estimate

 $N_{
m coll} \sim 10^{-3} f_c rac{N_c}{t_{
m rlx}}$ with fc being some uncertain factor of collision per binary

 $t_{\rm rlx} = \left(\frac{R_c^3}{GM_c}\right)^{1/2} \frac{N_c}{8\ln\Lambda_c}$

Mass segregation and runaway collisions

Mass growth rate

A massive star with m falls in at a timescale of

$$t_{\rm f} \sim 3.3 \frac{\langle m \rangle}{m} t_{\rm rlx}$$

So the mimimum mass of the stars that fall in within t is

$$m_{\rm f} \sim 1.9 M_{\odot} \, rac{1 {
m Myr}}{t} \left(rac{R_c}{1 {
m pc}}
ight)^{3/2} \left(rac{M_c}{1 M_{\odot}}
ight)^{1/2} (\ln \Lambda)^{-1}$$

Empirically, with a "universal" secondary mass distribution, the average mass gain per collision is

$$\delta m_{
m coll} \sim 4m_{
m f} \rightarrow \delta m_{
m coll} \sim 4 \, \frac{t_{
m rlx}}{t} \langle m \rangle \ln \Lambda c$$

Finally, we estimate

$$rac{\mathrm{d}m_r}{\mathrm{d}t} = N_{\mathrm{coll}}\,\delta m_{\mathrm{coll}} = 4 imes 10^{-3} f_c \, rac{N_c \langle m
angle}{t} \ln\Lambda \mathrm{c}$$

Formation of metal-poor stars

PopIII to PopII transition

Is there a "critical metallicity" for low-mass star formation ?

If so, what's the key process ?

VS.

atomic cooling by C, O @low-density" cooling by dust @high density

Summary

- Super-computer simulations show a wide range of masses for primordial stars, including those heavier than 300 M_{sun}.
- There are a few paths to form very massive (10⁵ Msun) stars, that collapse to BHs. Early streaming motions might have played a vital role.
- Second generation stars with low metallicities include low-mass stars. Possibly the origin of Galactic extremely metal-poor stars.

Research Frontier:

Open Questions for you

The mass of the first stars

- What is the lower/upper mass limit for PopIII ?
- What is the role of dark matter ?
- Were low-mass PopIII formed (brwn dwrfs) ? Where are they now ?
- Did pair-instability supernovae occur at high-z ? How do we detect and identify by JWST ?

Open Questions

First blackholes

- How does BH (seed) formation fits in the current cosmology, and, should it actually ?
- The final growth problem, from 10^6 to 10^9
- Did BH(QSOs)@z>6 contribute to reionization ?
- Where are the PopIII remnant blackholes now ? Are they still around in the Galaxy ?

	Subaru Hi Quasar Lumin	gh-z Exploration osity Function a	n of Low-luminosity Qu nd Contribution to Cos	asars (SHELLQs). V. mic Reionization at $z = 6$	fark
Yoshi	ki Matsuoka ¹ . Michael A. Strauss ² 🙃. Nobunari Kashikawa ^{3,4,5} 👼. Masafusa Onoue ^{4,5,6} 🕘. Kazushi Iwasawa ² 🙆. Ji-Jia Tane ⁸ .				
C F Tosh	THE ASTROPHYSICAL 0 2015. The American Astr	JOURNAL LETTERS, 813:1 monical Society. All rights reser	.8 (6pp), 2015 November 1 red	de	i:10.1088/2041-820
Hiro	COSMIC REIONIZATION AFTER PLANCK: COULD QUASARS DO IT ALL?				
	PIERO MADAU ¹ AND FRANCESCO HAARDT ^{2,3} ¹ Department of Astronomy & Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064, USA ² Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, via Valleggio 11, 1-22100 Como, Italy				
	MNRAS 000, 1-15 (2018)		Preprint 23 January 2019	Compiled using MNRAS IMEX style file v3.	0
	The Goldilo Enrico Garaldi ¹ Argelander husting für Ast ³ Max Planck Lossitus for A ³ Max Planck Comparing or Accepted XXX. Received Y	cks problem (, 1 * † Michele Co ronousie der Universitär Bous strophysics, Karl-Schwarzsch of Dura Facility, Giefienbachs YY; in original form ZZZ	of the quasar contri mpostella, ^{2,3} and Cristian <i>Auf den Higgl 71, 51121 Bong, Germary</i> <i>Id Single 1, 85741 Garching, Germary</i> <i>rugle 2, 85741 Garching, Germary</i>	bution to reionization o Porciani ¹	the second seco
2					
Jan 201		ABSTRACT The detection motivated M nuclei domin ture is in agre (IGM) and th	of an unexpectedly large number of adau and Haardt to investigate a rei ate the photon budget at all times, rement with the evolution of the H I e ontical dents to Thomson scatterin	f faint candidate quasars (QSO) at $z \ge 4$ ha onization scenario in which active galacti Their analytical study reveals that this pic volume fraction in the intergalactic mediu g of the cosmic microwave backeround. W	s c - n e

Open Questions

3. Metal-poor stars

Star formation in the first galaxies

- What is the key mechanism that enables the formation of low-mass stars ?
- How and where were EMP stars formed ?
- Is there a "critical metallicity" or "dusticity" ?
- How rapidly was the IGM metal-enriched ?
 Why do early star formation and present-day star-formation differ so much ?