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A young, monstrous blackhole -

Wu et al. Nature 2015

SDSS J0100+2802

12 billion solar-masses
0.9Gyrs after the big bang -
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Blackhole seeds: Rees diagram

Gas cools

very slowly
forming a
stable disc

Poplll remnant

odte,

Globally
unstable gas

center and a

Infails towards
q O the galaxy

supermassive

via a super-fia8sive star

Locally

unstable
gas flows
towards the

steltar

First stars:
maybe one
star per
galaxy, up
to hundred
times larger
than the sun

The stellar
core collapses
into a smail
black hole,
oembedded in
what is left

of the star

Gas
fragments
into stars,
and a dense

a - star cluster
gataxy center - COISION oo

Volonteri 2012, Science

If the star is
more massive
than ~300 solar
masses, it
coliapses into
black hole,
~200 times

the Sun

The black hole
swallows

the envelope
growing up

to a mitlion
solar masses

Stars merge into
a very massive
star, that
collapses into
black hole -1000
times more
massive than
the Sun

BH seed formation models

- Remnants of the first stars

Primordial stars > 300 Msun

- Direct collapse of a massive gas cloud

UV radiation driven model
Turbulent collapse induced by streaming motions

- Stellar collisions in dense star cluster

IBlackhole growth: Johnson plot]
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Direct collapse model

Radiative feedback from first stars and galaxies

Photo-dissociation by Far-UV radiation: H2 + y — H +m
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Direct collapse model

Formation of
super-massive
star ~ 105 Msun
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Cosmological conditions

Chon & Latif 2017; Chon+ 2018
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JWST will see it!
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Reduced Baryon Fraction
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Supersonic gas streams
drive BH formation

A high-density region with 3-c streaming velocity (90 km/s @ z=1089)
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The role of turbulence
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Core evolution of accreting stars

Umeda+ 2016, ApJL
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In stellar interior, the effective EoS is
' =4/3+ B/6 +0(B83). B: gas/total pressure

The core is General Relativistically unstable if
I' < 4/3 + 1.12 (2 GM/Rc?).
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Run-away stellar collisions

Mhalo > 107 Msun, Meiuster ~ 105 Msun, z>10

Mass segregation and runaway collisions

Time=298171

Star collision rate

The central star grows at a rate

dm,
dt

= Neoll Mol
The collision rate is governed by 3-body binary formation
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Mass growth rate
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] e . } n Rather brave extrapolation...
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Poplll to Popll transition

Is there a “critical metallicity”

: for low-mass star formation ?
Formation of metal-poor stars

If so, what's the key process 7

atomic cooling
by C, O
@low-density”

cooling
by dust
@high density

VS.




Spherical collapse calculation

3

“Minimal” chemistry

54 reactions for 27 species:
H+, e-, H, H-, H2, D+, D, HD, l
C+, C, CH, CHz, CO+, CO, COg,

O+, O, OH+, OH, H20+, H20, H30+,
02+, Oy, Si, SiO, SiO2

Grain chemistry: metallic silicon (Si), metallic iron (Fe),
Mg2SiOs, MgSiOs, amorphous carbon (C), SiOo,
MgO, FeS, and Al2O3 Nozawa et al. 2007; 2012
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Chemical and radiative cooling
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Does metallicity determine everything ?
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UNI-Z5

Chemo-thermal evolution

0 4 8 12
log [Central density lem™)

Mp=10"M,  10°M,  10°M, 1M, —
‘v
Zz 3 ‘o0
E ]
El 2
B g
3 g
w 2 . 5
= Temperature evolution S
-2, 0
UNI 107°M S
Mye=10°M,  10°M
g 3 g
g 3
2 E
B £
£ =
S g
Wi 2 : : ;
= Dominant cooling/heating
UNI 10 Me

0 4 8 2 16
-3

log [Central density / cm™]

See also Grassi et al. 2015, Bovino et al. 2016

"Filamentation" vs disk fragmentation

Thermal process

Simulation for polytropic gas
Tsuribe & Omukai (2006)

dominant.

a constant separation

=364 yr

v'Induced by gas cooling
v'Radial (infall) velocity is

v Clumps are aligned with

(Inutsuka & Miyama 1997; Tsuribe &
Omukai 2006; Heigl et al. 2016)
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Gravitational instability

v'Tangential (rotational)
velocity is dominant.

(Gammie et al. 2001; Vorobyov
2010; Zhu et al. 2012)

¥'Induced by self-gravity

v Clumps are formed in arms

Simulation for Pop Il
Greif et al. (2012)
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There are reasons to fragment
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Do you still remember these ?

Hopefully...

OLDEST STARS IN OUR BACKYARD

Low-mass (<1M,,), Caffau et al. 2012, Nature
extremely iron-poor star.

Metallicity below 4.5 x 10°° that of the sun.

A SECOND-GENERATION STAR ?

Some stars contain almost no iron!!

4 @ 2 o0 1
[Fe/H]

In the Milky Way halo, there are
Stars with very low metal content.

MONSTROUS BLACKHOLE AT EOR

Wu et al. 2015 Seed BH formation mechanism ?
Banados et al. 2017 ?
>10 solarmasses

Luminpeity

Blckhole misss

FASCINATION WITH CURRENT
ASTRONOMY & COSMOLOGY

= Peculiar, small and old stars in our Milky Way.

* Existence of monstrous blackholes at the most
distant place.

+ Small polarization signatures in the cosmic
microwave background radiation.

These are seemingly different, and unrelated issues.
But they are actually connected to each other within
the big picture or the whole story of our universe.




Summary

e Super-computer simulations show a wide range
of masses for primordial stars,
including those heavier than 300 Msun.

® There are a few paths to form very massive
(105 Msun) stars, that collapse to BHs. Early
streaming motions might have played a vital role.

® Second generation stars with low metallicities
include low-mass stars. Possibly the origin of
Galactic extremely metal-poor stars.

Research Frontier:
Open Questions for you

The mass of the first stars
- What is the lower/upper mass limit for Poplll ?

- What is the role of dark matter ?

- Were low-mass Poplll formed (brwn dwrfs) ?
Where are they now ?

- Did pair-instability supernovae occur at high-z ?
How do we detect and identify by JWST ?

Open Questions

First blackholes

- How does BH (seed) formation fits in the
current cosmology, and, should it actually ?

- The final growth problem, from 106 to 10°
- Did BH(QSOs)@z>6 contribute to reionization ?

- Where are the Poplll remnant blackholes now ?

Are they still around in the Galaxy ?

Subaru High-z Exploration of Low-luminesity Quasars (SHELLQs). V.
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Open Questions

3. Metal-poor stars

Star formation in the first galaxies
- What is the key mechanism that enables

the formation of low-mass stars ?
- How and where were EMP stars formed ?

- Is there a “critical metallicity” or “dusticity” ?

- How rapidly was the IGM metal-enriched ?
- Why do early star formation and present-day
star-formation differ so much ?




