First galaxies: observations Lecture 3

Renske Smit Newton-Kavli fellow - University of Cambridge

The spectral energy distribution

Adapted from Galliano et al. 2018

The spectral energy distribution

Adapted from Galliano et al. 2018

Overview

Lecture 1: Detection methods and the galaxy census

Lecture 2: Dust and stellar mass

Lecture 3: Optical and sub-mm spectroscopy

- Spectroscopic confirmations
- Lyman alpha and the IGM neutral hydrogen fraction
- [CII] emission: origin and detections
- Potential for kinematics
- High ionisation lines

Spectroscopic confirmation of galaxies in the EoR

Spectroscopic confirmation of galaxies in the EoR

Lyman- α z=3-6

- Lya at 1216Å is the intrinsically the brightest emission line in the spectrum of SF galaxies
- Due to resonant scattering the Lya fraction goes down.
 Lya is mainly observed in low-mass, low metallicity systems

Stark et al. 2011

Lyman- α z=3-6

LAE luminosity function: no evolution from z=3.1 to z=5.7 - unlike strong evolution of LBGs

Lyman- α z>6

Lyman- α z>6

Consistent results from LBG follow-up and LAE narrowband sources

Neutral Hydrogen fraction of the IGM

Rapid change of the IGM neutral Hydrogen fraction between z=6 and z=7-8

Is this the case for all z>7 LBGs?

What makes these sources special?

Two possibilities:

- These sources are selected on [OIII] - the source of ionising photons can potentially create an ionised bubble
- These sources are bright (>L*) and therefore likely live in overdens regions dens regions might reionise first

Stark et al. 2017

Spectroscopic confirmation of galaxies in the EoR

Lyman Break spectroscopy

Watson et al. 2015

Figure 2 | **Spectrum of A1689-zD1.** The 1D (lower) and 2D (upper) binned spectra are shown, with the 68% confidence uncertainty on the

SED (blue line) are shown. The Ly α break is close to the spec NIR/VIS arm split, however, the break is clearly detected in

Grism spectroscopy

Oesch et al. 2016

Grism spectroscopy

For single band detections low redshift line emitters are a new class of interloper

[OIII] at z=2

Bouwens et al. 2011; Ellis et al. 2013

Brammer et al. 2013

Spectroscopic confirmation of galaxies in the EoR

Low- and high-redshift spectroscopic tracers

Low- and high-redshift spectroscopic tracers

Low- and high-redshift spectroscopic tracers

ALMA as a redshift machine?

Ouchi et al., 2013

see also Ota et al. 2014, Maiolino et al. 2015

Himiko revisited: faint but detectable [CII]

Carniani, Maiolino, Smit & Amorin, 2017

ALMA [CII] (non)detections

ALMA [CII] (non)detections

A potential difference between Lyα emitters and non-Lyα emitters?

Knudsen et al. 2016

ALMA as a 'redshift machine'

Uncertainty in photometric redshift requires a (long) scan of the frequency range

High-EW [OIII] emitters

 Colour offers only occur in certain redshift bands
extra constraints on the redshift probability distribution!

Smit et al., 2014; 2015, Roberts-Borsani et al. 2016

Emission line signatures of Ha, [OIII]

Smit et al. 2015

>8 sigma - 24 min on source!

Smit et al. 2018

Smit et al. 2018

ALMA spectroscopic confirmations

- Not selected on Lyα: implications for stellar population or gas column density?
- Modestly red UVcontinuum slopes and bright Luv: more evolved/ dustier galaxies?

What produces bright [CII] emission?

Bright [CII] can appear in sources with red and blue UV slopes, and even in high-EW Lyα emitters!

What produces bright [CII] emission?

Matthee et al. 2019

Origin of [CII] in the interstellar medium

Credit: Jorge Pineda

Origin of [CII] in the interstellar medium

Photoelectric effect is perhaps the most efficient mechanism of [CII] excitation → need <u>dust</u>

Credit: Jorge Pineda

Photo-electric effect

[CII] more easily excited in some sources?

One possible explanation is a higher gas-to-dust ratio: UV light penetrates further into the photodissociation region surrounding SF

[CII] 'halos'?

Stacking of z=5-7sources: [CII] contribution from diffuse gas in the circumgalactic medium (CGM)? Evidence for outflows?

The potential for kinematics from ALMA

IFU spectroscopy

The promise of ALMA for kinematics using [CII]

The promise of ALMA for kinematics using [CII]

Smooth accretion from the cosmic web as an important mechanism for galaxy growth at z~7?

Smit et al. 2018

Observational classification indicates likely 'rotation-dominated' systems

Disk model works well, however mergers or gas outflows are still possible

Dynamical masses from [CII]

15-50% stellar mass fraction suggest gas rich systems - similar to z~2-3 starforming disks

Rotation vs. chaotic motion

Jones et al., 2017

Matthee et al., 2017

What fraction of the galaxy population is chaotic vs. settled?

Contribution of mergers vs smooth accretion

At z>6 mergers and smooth accretion might contribute equally to stellar mass growth

Duncan, et al., 2019

Simulation predictions for [CII]

Pallottini, et al., 2017;2019

Simulations predict highly time variable morphologies, but ordered rotation is common

Katz, et al., 2019

see also Pawlik et al. 2011, Romano-Diaz et al. 2011, Feng et al. 2015

The promise of ALMA for kinematics using [CII]

Highly ionised gas from spectroscopy

High-EW [OIII] emitters

 Given the measurements of high-EW ionisation lines from Spitzer we might also expect fainter lines in the rest-frame UV

High ionisation lines found at z~6-8

Stark et al. 2015; 2017

see also Shibuya et al., 2017; Zabl et al., 2015

High ionisation lines found at z~6-8

Classic BPT

Rest-frame optical lines have well-studied line ratios to discriminate between AGN and star formation

Baldwin, Phillips & Terlevich

Photoionisation modelling

- New development of line ratio diagnostics in the rest-frame UV can replace the BPT diagnostics to differentiate between AGN & star-formation
- Most z>6 galaxies with deep rest-frame UV spectroscopy indicate likely SF origin of photons

Feltre et al. 2016; Mainali et al. 2017

The spatial distribution of CIV lines with lensing

Smit et al., 2017

- BPASS models including binary rotation needed for high CIV EW
- Young ages and low metallicity stellar population (<5% solar)

ALMA observations of highly ionised lines

OIII emission linked to UV bright star-formation?

Spectroscopic line record with ALMA

ALMA showing it's real potential: [OIII] at z=9.11!!

Hashimoto et al., 2018
Summary

- $Ly\alpha$ is now found deep in the Epoch of Reionisation potentially emerging from ionised bubbles
- ALMA is starting to take over as the main way of obtaining spectroscopic confirmations
- Bright and extended [CII] emitters are now found in the Epoch of Reionisation - kinematics of these galaxies could suggest turbulent rotating systems 800 million years after the Big Bang
- Detection of high-ionisation lines indicate a hard radiation field in the highest redshift galaxies - star-formation is a likely origin, but some evidence for AGN too!