First galaxies: observations Lecture 2

Renske Smit Newton-Kavli fellow - University of Cambridge

Lecture 1: census of star-formation activity

The spectral energy distribution

Adapted from Galliano et al. 2018

The spectral energy distribution

Adapted from Galliano et al. 2018

Overview

Lecture 1: Detection methods and the galaxy census

Lecture 2: Dust and stellar mass

- UV continuum slope measurements
- Dust obscuration
- Ages and stellar masses
- Specific star formation rate evolution
- Ionising photon production efficiency

Lecture 3: Optical and sub-mm spectroscopy

Basic properties derived from Hubble

Extremely blue sources?

Dunlop 2013; Bouwens et al. 2010

Extremely blue sources?

Individual error-bars are still too large to identify a 'zero' metallicity galaxies from the UV-slope

Dunlop 2013; Bouwens et al. 2010

What is the UV slope sensitive to?

Can we calibrate dust?

Wide range of samples are consistent

Overzier et al. 2011

Luminosity dependence of the UV slope

UV -bright sources are likely the most massive and most metal rich - which is needed to produce dust

Stark et al. 2016

Application: UV LF

Assuming β is a proxy for dust - we can create dust corrected UV LF

One of the most important systematics is understanding the scatter!

Application: SFR density

An ALMA view of dust in the Early Universe

ALMA imaging over the Hubble Ultra Deep Field

Dunlop et al. 2017

No dust in modestly red LBGs

Capak et al., 2015

SMC dust curve?

Smit et al., 2018

Salim et al., 2018

Other possible effects...

- Some local analogs show a shift in the dust peak that might indicate hot dust temperatures...
- For ALMA observations at 200 micron this give non-detections despite significant dust content
- Other possible effects include the dust opacity and dust grain composition

Dust in blue galaxies?

Spatial offsets UV and IR continuum

z=3.1

Koprowski et al., 2016

Dust geometry also affects the [CII] morphology

Dust formation models

- AGB pulsations produce a lot of dust but on a longer timescales
- SN produce (and destruct) dust on short timescales
- The least understood and most debated form of dust formation is ISM grain growth

A Spitzer view of stellar mass build-up

Rest-frame UV to optical SED

Need the older stars in the rest-frame optical to derive accurate masses, ages and specific star formation rates

Spitzer deep imagine over the HUDF

Credit: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

Labbé et al. (2015)

Spitzer Space Telescope

- Cold mission: 2003 2009
 Mid-infrared Universe
- Warm Mission 2009 2019: Liquid helium to cool the instruments ran out
- Shortest wavelength filters produce images that are still sensitive enough to detect distant galaxies found with Hubble

Credit: A. Zitrin

Source de-confusion

Results on galaxy properties z>3: surprisingly old ages, high masses

- z~6 Lyman break galaxy with a large Balmer break indicating a stellar population 450Myr old
- Calculating back assumes quite a lot of star-formation already at z~12

Eyles et al. 2005

Results on galaxy properties z>3: surprisingly old ages, high masses

Richard et al. 2011

The main sequence of star-forming galaxies

Dutton et al. 2010

Strong evolution between redshift z~0-1

Dutton et al. 2010

Dutton et al. 2010

Strong evolution between redshift z~0-1

Weak evolution z~I-7

Dutton et al. 2010

 $sSFR (SFR / M_*) vs. redshift - zeropoint evolution of the main sequence$

Semi-analytical models

$sSFR = SFR / M_* = inverse growth time scale$

Dutton et al. 2010

Semi-analytical models

Dutton et al. 2010

Semi-analytical models

Baryonic processes needed to decouple SFR from inflow rates

Dutton et al. 2010

Early results showed a 'plateau' at z>2

See also FeuIner+05, Yan+06, Eyles+07, Stark+09, Labbe+10a, b, Schaerer+10, McLure+11

Problem for galaxy formation?

Weinmann et al. 2011

See also Bouche+10, Davé+11

Nebular emission lines: two degenerate solutions

Are stellar masses and ages overestimated?

Assumptions on emission lines contamination

Shim et al. 2011; Stark et al. 2012

Smit et al. 2014;2015

Modest samples of z~7 [OIII] emitters

- Spitzer photometry dominated by optical emission lines
- Large fraction of sources (~50%) show 'extreme' emission lines
 → ubiquitous in early galaxies

Modest samples of z~7 [OIII] emitters

Bowler et al. 2017

Mass estimates without contamination

Mass estimate with clean [4.5] band log(M)~9.0 M_☉

Mass estimate with [3.6]+[4.5] $log(M)~9.5 M_{\odot}$

0.5-1.0 dex offset in mass estimate

Smit et al. 2014

Updated sSFR evolution

Mild discrepancy still at the highest redshifts and redshift =1

New evidence for older stellar populations?

Spectroscopic redshift at z=9.1 no contribution of [OIII] nebular lines to IRAC flux

Rest-frame wavelength $[\mu m]$

Hashimoto et al. 2018

Observed wavelength [μ m]

Interpreting extreme emission lines and implications for cosmic Reionisation

How to explain extreme equivalent widths?

Finkelstein et al. 2013

Missing components on stellar populations?

The majority of O and B stars might be in binaries binary effects such as envelope stripping can not be neglected!

Ionising flux from binary stars

Models including binary stellar models

- BPASS models (e.g. Eldridge & Stanway 2012) include binary effects
- Another possible explanation is the ubiquitous presence of faint/obscured AGN (see tomorrow's lecture!)

The photons needed to sustain an ionised Universe

Credit: Dawn Erb

Stellar populations

(models and observations) efficiency of ionising photon production

Lyman continuum observations

(lower redshift) fraction of photons that escape into the IGM

• Available number density of ionising photons :

$$n_{\rm ion} = f_{\rm esc} \, \xi_{\rm ion} \, \rho_{\rm UV},$$

Robertson et al. 2015

- Lyman continuum production efficiency (**ξion**) = the number of ionising photons produced per visible UV photon (at ~1600Å)
- Escape fraction (Fesc) = fraction of those ionising photons that makes it out of the galaxy

• Available number density of ionising photons :

$$n_{\rm ion} = f_{\rm esc} \, \xi_{\rm ion} \, \rho_{\rm UV},$$

Robertson et al. 2015

Escape fraction of ionising photons can only be assessed at z~3 due to the absorption in the IGM at z>4

Best estimates at z~3: f_{esc} < 0.09

Siana et al. 2015

- z~3 measurements of Fesc between 7-9% (e.g. Siana et al. 2015)
- Canonical values for ξion assume Bruzual and Charlot 2003 stellar population models, modest age (~100Myr) and metallicity (~0.2 solar)
- Given most recent UV LFs and canonical values of ξion, higher escape fractions - 16-20% are needed

- z~3 measurements of Fesc between 7-9% (e.g. Siana et al. 2015)
- Canonical values for ξion assume Bruzual and Charlot 2003 stellar population models, modest age (~100Myr) and metallicity (~0.2 solar)
- Given most recent UV LFs and canonical values of ξion, higher escape fractions - 16-20% are needed

Smit et al., 2016; Bouwens, Smit et al. 2016

Smit et al., 2016; Bouwens, Smit et al. 2016

Summary

- ALMA shows dust obscuration is more complex than previously assumed: standard calibrations are uncertain
- A better understanding of rest-frame optical colours has decreased tension with DM accretion rates
- Detection of high-EW ionisation lines indicate a hard radiation field in the highest redshift galaxies
- High values of ionising production efficiency can possibly alleviate the tension of low escape fraction to bring about cosmic Reionisation