First galaxies: observations Lecture 1

Renske Smit Newton-Kavli fellow - University of Cambridge

Reionisation ends $z \sim 6$ or t = 1 Gyr

First ultra IR luminous galaxies $z \sim 5-3$ or t = 1-2 Gyr

GN20 z=4 SFR>3000M⊙/yr

Hodge et al. 2015

Kriek et al. 2016

Overview

Lecture 1: Detection methods and the galaxy census

- The Lyman break technique
- Deep surveys: a short history
- The UV luminosity function
- Outstanding debates on the galaxy census
- Lyman alpha and dust continuum selections

Lecture 2: Dust and stellar mass

Lecture 3: Optical and sub-mm spectroscopy

Adapted from Galliano et al. 2018

Looking back to the early Universe

Looking back to the early Universe

Sharp feature around ~100 nm shifts to observable wavebands by redshift z=2-3

Lyman break technique

Lyman break technique

Lyman break technique - 'dropouts'

Credit: firstgalaxies.org

1995: Hubble Deep Field (HDF)

1993 Hubble mirror correction and installation of Wide Field and Planetary Camera 2 (WFPC2)

Census of star-formation in the Universe

Lilly et al. 1996; Madau et al. 1996

2004: Hubble Ultra Deep Field (HUDF)

2002 Hubble upgrade with the Advanced Camera for Surveys (ACS)

Hubble Ultra Deep Field Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, S. Beckwith (STScl) and the HUDF Team

GOODS fields

Great Observatories Origins Deep Survey (GOODS)

- Larger area survey detects brighter and more rare systems
- First statistical samples
- Start to obtain an actual census of the galaxy population out to z=6

UV luminosity function

UV luminosity function

2012: eXtreme Deep Field (XDF)

2012: eXtreme Deep Field

NICMOS vs WFC3

CANDELS

Cosmic Assembly Near-Infrared Deep Extragalactic Survey

CANDELS-Wide

Wedding cake strategy

Galaxy census out to the EoR

Bouwens et al. 2015

Redshift Frontier: z~11

Statistical samples

Redshift frontier

Obtaining a census of star-formation activity

Madau & Dickenson 2017

Interlopers and selection bias

Photometric redshift fitting

- Take 5-10 'templates' that cover the parameter space of galaxy spectra
- Take all possible linear combinations of the template set at every redshift with arbitrary normalisation
- Minimise X² for best fit redshift solution

Typical 'bimodal' solution

Interlopers and selection bias

Bowler et al. 2014

Interlopers and selection bias

Bowler et al. 2014

Colour-colour selection

Interlopers and selection bias

bright galaxies in Hubble can't be confused with stars - faint galaxies and ground based imaging are more problematic Cool M, L & T dwarf stars also become problematic at z~7

Bowler et al. 2014

Interlopers and selection bias

Tilvi et al. 2013

Selection bias: age

Selection bias: dust

Dust-free galaxies are more easily distinguished form interlopers than dusty ones

Colour-colour selection

Stronger selection bias More interlopers

Tilvi et al. 2013

UV luminosity function: open questions

- Shape and evolution of the bright end of the UV LF: implications for (AGN) feedback
- Accelerated evolution at z>8: implications for the emergence of the very first galaxies
- Slope and turnover of the faint end of the UV LF: implications for cosmic Reionisation

Parametrisation of the UV LF

 Schechter function breaks evolution of galaxy populations down to 3 parameters: M_{UV}*, φ* and α

$$\frac{\mathrm{d}n}{\mathrm{d}L} = \phi(L) = \left(\frac{\phi^{\star}}{L^{\star}}\right) \left(\frac{L}{L^{\star}}\right)^{\alpha} \exp^{-L/L^{\star}}$$

$$\phi(M) = \frac{\ln 10}{2.5} \phi^* (10^{0.4(M^* - M)})^{(\alpha + 1)} \exp[-10^{0.4(M^* - M)}],$$

Bouwens et al. 2007

Parametrisation of the UV LF

 Schechter function breaks evolution of galaxy populations down to 3 parameters: M_{UV}*, φ* and α

$$\frac{\mathrm{d}n}{\mathrm{d}L} = \phi(L) = \left(\frac{\phi^{\star}}{L^{\star}}\right) \left(\frac{L}{L^{\star}}\right)^{\alpha} \exp^{-L/L^{\star}}$$

$$\phi(M) = \frac{\ln 10}{2.5} \phi^* (10^{0.4(M^* - M)})^{(\alpha + 1)} \exp[-10^{0.4(M^* - M)}],$$

Bouwens et al. 2007

Parametrisation of the UV LF

M[•]_{1600,AB}

Bouwens et al. 2015

mag / Mpc²

log₁₀ Number /

Parametrisation of

— 1

Bouwens et al. 2015

Halo mass evolution

Steinhardt et al. 2016

Shape and parametrisation of the UV LF

Bowler et al. 2014; 2015

Shape and parametrisation of the UV LF

Shape and parametrisation of the UV LF

Bowler et al. 2014; 2015

Accelerated evolution z>8?

Accelerated evolution z>8?

Faint end: below the tip of the iceberg

The galaxies that dominate the UV output are not observed in the HUDF

Faint end: below the tip of the iceberg

Faint end of the UV LF

Incompleteness corrections!

Faint end of the UV LF

Bowler et al. 2017

Faint end of the UV LF: impact of size distribution

Kawamata et al. 2018

Faint end of the UV LF: local dwarfs

Needed for cosmic Reionisation

Faint end of the UV LF: local dwarfs

Credit: Dan Weisz

Faint end of the UV LF: GRBs

Faint end of the UV LF: GRBs

Alternative selection methods out to z=7

Alternative selections: Lya / LAEs

- Lyα at 1216Å is the intrinsically the brightest emission line in the spectrum of SF galaxies
- Due to resonant scattering the Lyα fraction goes down. Lyα is mainly observed in low-mass, low metallicity systems
- Ground based wide-field narrowband imaging (e.g. Subaru Hyper Supreme Cam) has selected statistical samples out to z=6.6

0

25 5<NR921<26 (

Alternative selections: Lya / LAEs

Above z>6.6 the neutral IGM in the EoR decreases the samples dramatically

Konno et al. 2014

Alternative selections: Lya in IFU spectroscopy

Credit: Chris Harrison

Alternative selections: Lya in IFU spectroscopy

Alternative selections: IR/Sub-mm continuum

Alternative selections: IR/Sub-mm continuum

 Current redshift record at for sub-millimetre selected source is z=6.9 - selected from South Pole Telescope point-source detections (lensed submillimetre galaxies)

Marrone et al. 2017

SFR>3000M_o/yr
Summary lecture 1

- Despite very limited information that is available on distant galaxies, the last ~20 years has seen incredible progress in detecting galaxies out to redshift z=10
- Some scepticism is justified as galaxy samples are always biased towards young & dust-free galaxies and interlopers of lower redshift quiescent galaxies and Milky Way stars are still often present
- Open questions on the galaxy census include
 1) understanding the evolution of the UV LF bright end with respect to halo mass evolution
 2) How steep is the UV LF faint end and when does it turn over?
 3) Is there evidence for accelerated evolution at z>8?