Feedback

Prevalence of Galactic Wind Feedback

-- Pollution of Intergalactic Medium by metals

Blue: Chandra (X-ray) Red Green: HST (optical)

Images: Subaru, NASA

Ubiquitous Outflows in High-z SF

Dark Matter Halo —> Galaxies

Stellar-to-Halo Mass Ratio (SHMR)

(cf. Ilbert+'10; George+'11; Leauthaud+'12)

Supernova(SN) Feedback

- Source of radiation, metals, cosmic rays; Etot~10⁵³ erg/SN
- Total FB energy: E_{fb}~10⁵¹ erg/SN
 - —> $E_{fb} \sim 10^{48-49} \text{ erg/M}_{\odot}$ (E_k, E_{th)}
- Outflows, Suppression of SF

(White & Rees 78; Dekel & Silk '86)

mesh codes

Crab Nebula - SN 1054 (NASA, ESA)

- Kinetic energy & momentum
- Thermal energy
- Type I, II

SN feedback efficiency

Type II SNe: ~ 0.01 SNe per $1 M_{\odot}$ of stars (IMF)

 $E_{
m SN}~\sim~10^{51}\,{
m erg}~{
m per}~{
m SN}$ injected into ISM.

~30% of this couples to ISM as kinetic E -> galactic wind

Kinetic energy of GW: $E_{\rm w} \sim 10^{51} \times 0.3 \times 0.01 = 3 \times 10^{48} \text{ erg } M_{\odot}^{-1}$

 $\begin{array}{ll} \text{mass-loading} & \eta \approx 0.25 \\ \text{factor} \end{array}$

w/out feedback

w/ feedback

volume filling factor Z >10⁻³ Zsun : ~6% Z >10⁻² Zsun : ~4% Z >10⁻¹ Zsun : ~2%

75 cMpc/h

Vogelsberger+'14

Historical Flow Chart of SN Feedback Treatment

Galactic Wind (Kinetic) Feedback

Momentum-driven: $\dot{M}_W V_W \sim \dot{P}_{rad} \sim SFR$

 $\eta = \frac{\sigma_0}{\sigma_{\rm gal}}$

Radiation pressure from massive stars and SNe is applied to the dust particles, which entrains the wind

Murray+ '05

Higher mass-loading factor for lower mass galaxies.

Multicomponent Variable Velocity (MVV) Wind model

Impact of Momentum-driven Wind on IGM

Temperature

I0 Mpc/h Energy-driven wind (constant V_w)

SH03 model

Projected metal density

Momentum-driven

Choi & KN '10

Galaxy Stellar Mass Function (z=0)

Crain+ '15

u, g, r - composite image SKIRT (Baes+ '11) RT code

AREPO simulation

ellipticals

disk galaxies

In higher res. zoom-in sims,

Stellar Feedback

(prior to standard SN feedback)

- stellar winds from young stars ("Early" stellar FB)
- radiation pressure $\dot{P}_{rad} \approx (1 \exp(-\tau_{UV/optical}))(1 + \tau_{IR})L_{incident}/c$
 - dust absorption of UV —> IR emission
- photo-ionization + photo-electric heating (alters future heating/cooilng rates)

Hopkins+ '13, ...

Galaxy Merger (Springel+ '05, ..., Hopkins+'13) Simulations 0.0 Gyr Gas **Stellar Feedback:** radiation pressure, direct momentum (stellar wind), photoionization heating But, this is not in cosmological context. **Resolution**: m_p≲1000M_☉, ε~3pc Hopkins+'13 10 kpc (GADGET SPH)

A High-resolution Galaxy Simulations Comparison Initiative: www.AGORAsimulations.org

Contact: santacruzgalaxy@gmail.com

AGORA First light: First paper by Ji-hoon Kim et al. (arXiv:1308.2669)
 Project funded in part by:

Kim+ 14, 16; plus more in prep.

AGN feedback efficiency

Violent AGN feedback (quasar mode)

Movie

Di Matteo+ '05

Stellar Light Gas Density z=4.00 sSFR=3.07Gyr⁻¹ log₁₀(M.)=10.4 SFR=80.0

Formation of massive elliptical, "red & dead" gal.

"Recipe" for Galaxy Formation

- Background Cosmology
- Gravitational Instability + spherical collapse model
- ☑N-body dynamics (Dark Matter) Ch.2 of my book
- Hydrodynamics Ch.3 of my book
- ✓ Radiative Cooling of Gas, UVB
- Star Formation
- Feedback (SNe, AGNs), Chemical Enrichment

CELib chemical evolution package (Saitoh '17)

https://bitbucket.org/tsaitoh/celib/src/master/

Part III.3

zoom-in simulations (movie time!) How do galaxies get gas? cold flow & disk formation Escape fraction Emission lines from high-z gals.

Three Revolutions in Cosmological Hydro Simulations

Setting Up a Zoom-in Simulation

MUSIC (Hahn & Abel '11) + Thompson's SPHGR (python analyses code suite)

Cosmological box

z = 2.01

Zoom-in region

color=temperature, intensity=gas density yellow dots = stars

Thompson & KN '13

z~2

AGORA L12 sim. Shimizu, KN+

Temperature

AGORA L12 sim. Shimizu, KN+

m12q FIRE simulation $m_{dm} \sim 2e5 \text{ Mo/h}$ $\epsilon_{dm} = 100 \text{ pc/h}$ $m_b = 5e3 \text{ Mo/h}$ $\epsilon_b = 7 \text{ pc/h}$

Feedback in Zoom-in Cosmo Sim

Cold flow: generic feature of ACDM (accretion)

(details of SF & feedback are different in each code)

Stewart+'17

1st-order Galaxy formation

Rees & Ostriker '77, White & Rees '78, Fall & Efstathiou '80, White & Frenk '91, Mo, Mao & White '98

Galaxy formation with cold flows

How do galaxies acquire gas? Cold Flow & Virial Shock

Birnboim & Dekel '03 : Keres+'05

t_compression vs. t_cool

controls the thermal state of gas.

Criteria for cold flows

$$t_{comp} = -\frac{\Gamma}{\nabla \cdot \mathbf{u}} \sim \Gamma t_{ff}$$
$$t_{cool} = \frac{\frac{3}{2}nk_BT}{n_H^2 \Lambda(T, Z)}$$

Compute $\frac{t_{cool}}{t_{comp}}$ at Rv and examine the redshift evolution.

Dekel & Birnboim '06

Transition from Cold to Hot mode

Gas Accretion onto Halos

Noh & Mcquinn '14

Gas Accretion onto Halos

Noh & Mcquinn '14

"Cold Flow Disk"

Extended, flattened rotating structures of high–J material.

Stewart+'17

Cold gas in halos have 4x J than dark matter

Impact of SN feedback on Gas

zoom-in sim: from z=20 to 6, resol. ~ 30 pc @ z~6

No SN feedback

w. SN feedback

Different morphologies @ z~7 w/ diff. SF & FB models

(zoom-in sim)

Yajima, KN+ '17

 $M_{dust}/M_{metal} = 0.4$, i.e. $M_{dust} = 0.008 M_{gas} (Z/Z_{\odot})$

Merger or Smooth Accretion?

Jaacks, Choi & KN, 12b

Accretion vs. Merger?

Romano-Diaz+ '14

Mergers

Escape Fraction of Ionizing Photons

Authentic Ray Tracing method (Nakamoto+ '01, Illiev+ '06, Yajima+ '09)

Escape Fraction of Ionizing Photons

¹² Yajima, Choi, KN 'l l

fesc as a func of Mhalo & redshift

- Decreasing f_{esc} as a func of M_{halo} --- roughly consistent with Razoumov+'09; but somewhat different from Gnedin+'09, Wise & Cen '09
- Universe can be reionized by the star-forming galaxies at z=6 if C≤10.
- High f_{esc} for low-mass gals helps.

(cf. Gnedin+, Paardekooper+, Razoumov+, Wise&Cen)

Yajima, Choi, KN 'I I

Reionization of the Universe

Low mass gals dominate the contrib. to the ionizing photons & they can maintain ionization to z~6

Escape Fraction of Ionizing Photons

Authors	f _{esc,ion} (M _{halo})	Method	
Gnedin+ '09	Very low 10 ⁻⁵ -10 ⁻¹ , 10 ¹¹ -10 ¹² M _☉	AMR, 6Mpc box, 65pc res, OTVET, z=3	Scale in kpc
Razoumov+'09	I.0-0.0, 10 ⁸ -10 ¹¹ M₀	SPH, 6Mpc box, ~0.5kpc res, resim 9 gals, z=4-10	(1) $M_{vir} = 1.57 \times 10^7 M_{\odot}$
Wise & Cen +'09	Large scatter & time evol. 0-0.4, \longrightarrow 10 ⁶ -10 ⁹ M _{\odot}	AMR, 2 & 8Mpc box, 0.1pc res, z=8	₩ 10 ⁻⁵ HH 10 ⁻⁵ 10 ⁰ 10 ⁻¹ 10 ⁻²
Yajima+ '09	0-0.5, with time	Eulerian (Mori & Umemura '06 sim, single system, t=0-1Gyr)	10 ⁻³ [] <u>10</u> <u>40</u> 60 80 100 Time [Myr]
Yajima, Choi, KN 'I I	1.0-0.0 10 ⁹ -10 ¹² M _☉	SPH, 10Mpc box, ~0.5kpc res, z=3-6 100s of gals.	

Emission lines from high-z galaxies

Arata, Yajima, KN+ '18, 19 Arata, Yajima, KN+ '19, arXiv:1908.01438 (just posted yesterday!)

(slides from Arata's IAU presentation)

Radiative Properties of the First Galaxies

Galaxy Evolution and Radiative Properties

Previous Works

(Cosmological hydro. + Radiative transfer)

Yajima+15

overdense region

UV light is heavily obscured by dust

Behrens+18 SMG at z=8.38 (Laporte+17)

Dust enrichment proceeds rapidly

Ma+15

less massive gals.

Escape fraction of ionizing photons fluctuates

Katz+19 Metal line emitters

Zoom-in sim. can resolve detailed ISM structure

Model & Setup

- Cosmological hydrodynamic simulations
 code: GADGET-3 developed by *First Billion Years* (FiBY) project
 z = 6 15 Zoom-in method (Yajima+17, Arata+18)
 target halo: M_h ~ 10¹¹ Ms (Halo-11), 10¹² Ms (Halo-12) at z=6
- Radiative transfer calculations

code: ART² (Li+08, Yajima+12)

- Multi-wavelength radiative transfer Ionizing / Dust cont. / Lyα / Metal lines
- Adaptive Mesh Refinement (AMR) Dust mass in a cell: $m_{\rm d} \approx x_{\rm c} \rho_{\rm c} V \mathcal{D}_{0.01} \left(\frac{Z}{Z_{\odot}} \right)$

Star Formation

Fluctuation of Escape Fraction

Large Dispersion of IR Luminosity

Intermittent SF — > wide variety of radiative properties

Arata+ '18

Lya Luminosity Evolution

Arata+ '19

Starbursting [O_{III}] Emissioin Phase and Quiescent [C_{II}] Emission Phase

[O_{III}]/[C_{II}] Ratio Evolution

Arata+19

Dust Temperature

Arata, Yajima, KN+ '18

Galactic Size

Arata, Yajima, KN+ '18

Projected Images

Arata, Yajima, KN+ '18

Summary

We studied radiative properties of the first galaxies using cosmological hydrodynamic simulations and multi-wavelength radiative transfer calculations

Intermittent star formation due to SN feedback generates wide variety of radiative properties

- + UV escape fraction fluctuates between 20-80%
- Time-scale of color transition is ~100 Myr
- + $L_{Ly\alpha}$ ~10⁴² erg s⁻¹ at z~10 might be observed by JWST
- ★ [O_{III}]/[C_{II}] ratio declines with metal enrichment

Arata, Yajima, KN+ '19, arXiv:1908.01438

us accretic

SN feedbac

Outflowing phase
Thanks to all the organizers; Roderik, Rodrigo, Laerte, Luciana, ... and everyone else who helped the organization!!

It was a great school !!

July 28 - August 7, 2019

Rennan Barkana TEL AVIV UNIVERSITY, ISRAEL

Xiaohui Fan UNIVERSITY OF ARIZONA, USA

Ken Nagamine OSAKA UNIVERSITY, JAPAN

Renske Smit UNIVERSITY OF CAMBRIDGE, UK

Patricia Tissera **UNIVERSITY ANDRES BELLO, CHILE**

Naoki Yoshida TOKYO UNIVERSITY, JAPAN

Saleem Zaroubi UNIVERSITY OF GRONINGEN, THE NETHERLANDS

Adi Zitrin **BEN-GURION UNIVERSITY, ISRAEL**

