The Giant Magellan Telescope Its instruments and the Brazilian participation

Daniel Moser Faes post-doc IAG/USP http://danmoser.github.io

Summary

- Motivation for the Giant Magellan Telescope (GMT)
- ELTs/GMSTs projects and their sites
- GMT consortium and project status
- GMT telescope overview
- GMT instrumentation
- The GMT Brazil Office (GMTBrO) and its instrumentation activities
- Final remarks

Motivation for GMT

Innovation in Astronomy

Progress in astronomy occurs by:

- Technological advancements
- New facilities
- Increase in sample sizes
- Innovative analysis

From David Yong (ANU) "Chemical enrichment in the early Galaxy".

Innovation in Astronomy

Progress in astronomy occurs by:

- Technological advancements
- New facilities
- Increase in sample sizes
- Innovative analysis

Facilities types:

- A. Space-based
- B. Surveys
- C. Target-oriented

Exciting era in observational astronomy:

- [C] ALMA (2013)
- [A] Gaia (2016)
- [B] S-Plus (2018)
- [B] LIGO (2018)
- [C] EHT (2019)

<u>Coming</u> (2020's):

- [A] JWST
- [A] Euclid
- [A] Plato
- [B] LSST
- [C] Extreme Large Telescopes (ELTs) or Giant Multi-Segmented Telescopes (GMSTs)

Telescopes and the atmosphere

Wavelength

Star counting

Magnitude	nitude Range Number of Stars per Range		Cumulative Stars	% Increase in Stars Seen	
-1	- <mark>1.</mark> 50 to -0.51	2	2		
0.	-0.50 to +0.49	: 6	.8	400%	
1	+0.50 to +1.49	. 14	22	275%	
2 • •	+1.50 to +2.49	71	93	· · 423%	
. 3	+2.50 to +3.49	190	283	304%	
.4	+3.50 to +4.49.	610	893	316%	
5	+4.50 to +5.49	1,929	• 2,822	316%	
6	+5.50 to +6.49	5,946	8,768	311%	
7	+6.50 to +7.49	17,765	26,533	. 303%	
8.	+7.50 to +8.49	51,094	77,627	293%	
9	+8.50 to +9.49	140,062	217,689	280%	
10 .	+9.50 to +10.49	409,194	626,883	288%	
. 11	+10.50 to +11.49	1,196,690	1,823,573	. 291%	
: 12	+11.50 to +12.49	3,481,113	5,304,685	291%.	
13	+12.50 to +13.49	10,126,390	15,431,076	291%	
14	+13.50 to +14.49	29,457,184	44,888,260	291%	
15	+14.50 to +15.49	85,689,537	• 130,577,797	291%	
.16	+15.50 to +16.49	249,266;759	379,844,556	291%	
17	+16.50 to +17.49	725,105,060	1,104,949,615	• 291%	
18	+17.50 to +18.49	2,109,295,881	3,214,245,496	- 291%	
19	+18.50 to +19.49	6,135,840,666	• 9,350,086,162	291%	
20	+19.50 to +20.49	17,848,866,544	27,198,952,706	• 291%	

Largest telescopes over time

Typical step size is about x2, about each 40 years.

Factor of ~1000x in diameter since Galileo.

To boldly go...

Discoveries are "Unscripted" (Roger Blandford)

- CMB
- Massive BH = radio
- Neutrinos
- Pulsars
- Gamma Ray Bursts
- Dark Matter
- Cosmic Expansion
- Gravitational lenses

Projects of telescopes

Sizes and dates

- 2-inch (<0.1m) "first telescope", 1609
- 72-inch (1.8m) Parsonstown, 1845
- 100-inch (2.5m) Hooker telescope, 1917
- 200-inch (5.1m) Hale telescope, 1948

 (...)
- Hubble *space* telescope, 1990

<u>Approx. Budgets</u>

- James Webb ST [1996-2021] = \$8.0 bi
- Hubble [1978-1990**] = \$1.2 bi in 1986
- GMT [2012-2024] = \$1.0 bi

ELTs/GMSTs projects and their sites

Radio vs optical telescopes

"Largest telescope ever": EHT

E-ELT: European Extremely Large Telescope

D= 39m A= 978m²

Location: Chile, Cerro Armazones

TMT: Thirty Meter Telescope

D= 30m A= 655m²

Location: Hawaii, Mauna Kea

TMT

XX

D= 25m A= 368m²

Location: Chile, Cerro Campanas

US-ELT Program

From David Silva

https://www.noao.edu/us-elt-program/

US-ELT Program

Overlap zone (almost 50% of sky!)

 Joint and/or simultaneous programs on same objects

Separation in longitude (7h)

· Critical for some time-domain phenomena

Thirty Meter Telescope Detailed Science Case: 2015

International Science Development Teams & TMT Science Advisory Committee

From David Silva

US-ELT Program

Operations Cost

Very Large Taxaction

European Extremely Large Telescope

Rech Tenningle

Thirty Meter Talaudope

Cron Symultopal Caronae Subaru Telescope

South Atroam New Technology Lorge Telescope Telescope Client Magetan Selectore Large Synoptic Darwy Telescope

Turbulent atmosphere

Plane waves from distant point source

Overcoming the Turbulence

SDSS

HST

SDSS: Sloan Digital Sky Survey HST: Hubble Space Telescope

Overcoming the Turbulence = Adaptive Optics (AO)

E.g.: SAM (GLAO) @ SOAR

SDSS

SAM

SAM: SOAR Adaptive Module

SOAR: SOuthern Astrophysical Research [Telescope]

Adaptive Optics

GMT consortium and project status

The partners = GMTO Corporation (2006)

Carnegie Institution for Science -

Arizona State University

Korea Astronomy and Space Science Institute (KASI)

University of Arizona

University of Texas at Austin

Texas A&M University

Cerro Campanas, Las Campanas Observatory, Chile

Australian National University

Australian Astronomy Limited"

From R. Bernstein

University of Chicago

ORTH

Smithsonian

Harvard University

São Paulo Research Foundation (FAPESP)

SOUTH

AMERICA

Astronomy Australia Limited

Australian National University

Carnegie Institution for Science

FAPESP – The São Paulo Research Foundation

Harvard University

Smithsonian Institution

Korean Astronomy and Space Science Institute

Texas A&M University

The University of Texas at Austin

University of Arizona

University of Chicago

The partners

GMT telescope overview

ELTs optics

- Ritchey-Chrétien (TMT, Keck, VLT)
- <u>Convex</u> focal plane

- **Gregorian** (GMT, Magellan, LBT)
- <u>Concave</u> focal plane

ELTs tech specs

<u>Attribute</u>	<u>GMT</u>	<u>TMT</u>	<u>E-ELT</u>
Aperture	24.5 m	30 m	39.3 m
Collecting Area	368 m ²	655 m ²	978 m ²
Final Focal	f/8	f/15	f/17.5
Focal Plane Scale	1.0 mm/arcsec	2.2 mm/arcsec	3.6 mm/arcsec
Field of View	10 arcmin (20 arcmin w/ cor)	10 arcmin (15 arcmin)	7 arcmin (10 arcmin)
Size of 10' FoV	0.6 meters	1.3 meters	2.0 meters

Comparing the ELTs with AO

- GMT: deformable mirror at M2; 2x *warm mirrors*
- TMT: post-focal deformable mirror. 2x *warm mirrors* + 10x cold mirrors
- ELT: deformable mirror at M4; 5x warm mirrors

GMT Instrumentation

The GMT instrumentation

Sensitivity as a function of aperture

Instrumentation

<u>Instrument</u>	Function	<u>λ Range (µm)</u>	<u>Resolution</u>	Field of View
G-CLEF	Optical High Resolution Spectrograph / PRV	0.35 – 0.95	20 – 100 k	7 x 1" fibers
GMACS	Optical Multi-Object Spectrograph	0.32 – 1.0	1000 – 6000	40 – 80 arcmin²
GMTIFS	NIR AO-fed IFU / Imager	0.9 – 2.5	4000 - 10,000	10 / 400 arcsec ²
GMTNIRS	JHKLM AO-fed High Resolution Spectrograph	1.2 – 5.0	50 – 100 k	Single Objec
MANIFEST*	Facility Robotic Fiber Feed	0.36 – 1.0	-	300 arcmin ²
ComCam	GLAO Commissioning Camera	0.37 – 0.90	-	40 – 80 arcmin²

*MANIFEST is included in the instrumentation program and budget.

The GMT instrumentation

GMT will be able to take **spectra** of nearly any object in the LSST deep catalog.

GMT Brazil Office

GMT 1st-gen Instrumentation suite

GMACS	G-CLEF	GMTIFS	GMTNIRS
Visible MOS	Visible Echelle	Near-IR IFU	1-5µm Echelle
Faint Objects Galaxies Mini-Surveys Transients	Exoplanets Abundances IGM/ISM Stellar Physics	Exoplanets Stellar Outflows Galaxy Dynamics Galactic Center	Exoplanets Pre-main Sequence Proto-stellar Disks Debris Disks

GMT 1st-gen Instrumentation suite

GMT-TMT combined instrumentation

Table 2. Properties of first-generation instruments and candidates for later instrument development and deployment

Instruments available	within five years	of first light				
Instrument	λλ(μm)	λ/δλ	λ/δλ FoV			Platform
Multi-Object Imaging S	pectrographs					
GMACS ¹	0.31-1.0	1,000 – 6,000 7' x 7'			South/GMT	
WFOS ¹	0.31-1.0	1,000 - 3,500		5' x 5'		North/TMT
High Dispersion Spectr	ographs					
G-CLEF ³	0.35 - 0.95	50,000 - 20	0,000	000 1'' fibers		South/GMT
MODHIS ¹	0.9 – 2.5	100,000 10''			North/TMT	
GMTNIRS ²	1.1 - 5.5	65,000 - 85,000		3" long slit		South/GMT
Adaptive Optics Fed Integral Spectrographs and Diffraction-Limited Imagers						
IRIS ²	0.9 – 2.5	4,000 - 10	,000 – 10,000 0.5'' - 4''(IFU)/34''		/34″	North/TMT
GMTIFS ²	1.0 - 2.5	5,000 & 10,000		0.5"- 4"(IFU)/20"		South/GMT
Instrument Concepts U	nder Considerati	on for Future	Develo	pment		
Instrument Function			Instrument		Function	
GMag-AOX ¹	High Contrast Imager		SuperFIRE ⁰		Near-IR Echelle	
PSI ⁰ High Contrast I		Imager HROS ⁰		Visible Echelle		
MICHI ¹ Mid-IR Imager/		/Spec IRMOS ^o		IR MOS w/IFUs		
⁹ Pre-Conceptual design	¹ Conceptual des	ign ² Prelimin	ary des	ign ³ Final desi	gn pha	se

From Sidney Wolff

GMT-TMT combined instrumentation

GMTBrO instrumentation activities

GMTBrO - The GMT Brazil Office

FAPESP joined GMT as a **founding member**.

FAPESP requests three areas of activity: **industry**, **education** and **research**.

The GMTBrO was created to coordinate the Brazilian participation in GMT.

The GMT will be ready by ~2024: to act in its **instrumentation** is a key strategy.

Currently involved institutions with GMTBrO:

- IAG/USP
- IFSC/USP
- IMT (Instituto Mauá de Tecnologia)

- LNA - UTFPR - UFMG

- UniVap
- UFABC

GMTBrO instrumentation activities

What is Systems Engineering?

"Systems Engineering is an **interdisciplinary approach and means** to enable the **realization of successful systems**."

International Council on Systems Engineering (INCOSE)

"Systems engineering is an **interdisciplinary field** of engineering and engineering management **that focuses on how to design and manage complex systems** over their life cycles."

Wikipedia

SE is a science itself

Journal of Systems Science and Sy Engineering

Editor-in-Chief: Jian Chen ISSN: 1004-3756 (print version) ISSN: 1861-9576 (electronic version) Journal no. 11518

Systems Engineering

© Wiley Periodicals, Inc.

January 2017

Volume 20, Issue 1 Pages 1–91

Previous Issue

Systems Engineering for the Preliminary Design of the Thirty Meter Telescope

MBSE in Telescope Modeling

Robert Karban, rkarban@incose.org; Rudolf Hauber, rudolf.hauber@hood-group.com; and Tim Weilkiens, tim.weilkiens@incose.org

ge Z. Angeli^{*a}, Scott Roberts^b, and Konstantinos Vogiatzis^a ppe Observatory, 1200 E. California Blvd. Mail Code 102-8, Pasadena, CA, USA 91125; of Astrophysics, 5071 West Saanich Road, Victoria, BC Canada V9E 2E7

n the framework of INCOSE's strategic initiative, the *Systems Engineering Vision 2020*, one of the main areas of focus is model-based systems engineering. In keeping with this emphasis, the European Southern Observatory (ESO; http://www.eso.org/) is collaborating with the German Chapter of INCOSE (http://www.gfse. de/) in the form of an "MBSE Challenge" team. The team's task is to

INCOSE

5.

6.

7.

8.

INCOSE HANDBOOK

GMT Brazil Office FAPESP

SE processes for GMACS

IAG/USP Optics Lab -- SAMplus for SOAR

The concept of the SOAR Adaptive Module (SAM) was developed in 2003, and commissioned in 2013. It was based on AO technology developed in the middle of 1990-s.

The project consists of upgrading the key AO components by new ones:

241 actuators (17 across pupil) Pupil diameter 50mm Stroke >15um (wavefront) Response time 1.5ms

OCAM2 (First Light)

Format 240x240 pixels, 24 um/pixel EM gain, readout noise <0.3el Latency 58 us, frame rate 1500 Hz Substrate gating

Figure 1: Critical AO components of the proposed SAM upgrade

Why instrumentation

- Scientific experiments become increasingly complex and involve multiple areas of knowledge.
- The largest astronomical research centers have instrumentation/engineering teams.
- The construction of instruments allows to:
 - **design specific instruments** for the research of the institution;
 - have **priority access** to data;
 - access to telescope time;
 - ease of **non-standard** instrument **settings**,
 - *etc*.
- There is already a history of technological innovation in scientific projects (e.g., Simon Ramon medals, ESO 1990 NTT Kavli Prize 2010, ...)

Final remarks

GMT Brazil Office

Final remarks

- Recent results and coming facilities make the 2020's a very exciting era for astrophysical research
- The ELTs are the next generation of optical/IR telescopes, and the GMT is one of them.
- FAPESP is a founding member of GMT with a shared of 4%.
- There is an unique space for discovery with the ELTs, mainly with spectroscopy of faint targets.

- GMTBrO coordinates national participation in GMT project, with the goal of a intrunstrumentation team.
- Adaptive Optics is a mandatory technology for large telescopes.
- SE is a powerful method to develop complex systems.
- After years used in space astronomy, SE is reaching the ground-based one.
- Instrumentation development enhances research.

To be an astronomer

How you thought it would be:

How people think it is:

How your parents think it is:

How it really is:

