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SERIES OF THREE ~90 MIN 
TALKS: 

I. Gravitational lensing 

II. High-redshift galaxies 
and reionization 
(through gravitational 
lenses) 

III. “~Hands on” - build 
your own lens model, 
luminosity function, and 
other fun stuff.

Abell 370 Credit: NASA/ESA



THE SCIENCE OF LENSING
MASS MAPPING: STRONG LENSING

GOAL: WE WANT TO CONSTRUCT A LENS MODEL FOR A CLUSTER.  
  

MEANING: WE WANT TO FIT A MODEL TO THE DATA 

IF THERE’S TIME, WE WILL PLANT SOME SOURCES AND RELENS THEM 
THROUGH THE LENS

A DIFFERENT LECTURE: MORE OF A JOINT DISCUSSION

Note: while some of what we will see today is general to lens modeling, what we will 
do today is a particular (yet true) example to understand the process. There are various 
lens modeling techniques, parameterizations, pipelines, and methodologies, that one 

can come up with. 



LECTURE III. A LENS MODEL AND LF

We will review: 

✤ 1. Types of models 

✤ 2. Ingredients 

✤ 3. Ray Tracing 

✤ 4. Minimization/optimization 

✤ 5. LF and magnification bias? 



THE SCIENCE OF LENSING
HOW TO MODEL A CLUSTER?

•What do we want to obtain: mass map, DM, magnification, slope etc. 
•We need multiple image identifications (and knowledge of the 

redshifts, distances). These will be our constraints, so a crucial 
ingredient.



THE SCIENCE OF LENSING
MASS MAPPING: STRONG LENSING

• Now generally, there are two typical ways to constrain the model. 
• The first is perhaps the most elegant and naive. It is called “free-form” or “non-

parametric”, and basically refers to the fact that one makes no (or very little) 
assumptions regarding the shape of the underlying mass distribution, and tries 
to infer it directly from the multiple image constraints. 
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• A possible implementation might be setting a grid of NxN pixels on the lens one 
wishes to model, and then finding the best-fit value of each pixel. If there are 
say a dozen constraints in an average massive cluster, one can easily see that: 
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• Now generally, there are two typical ways to constrain the model. 
• The first is perhaps the most elegant and naive. It is called “free-form” or “non-

parametric”, and basically refers to the fact that one makes no (or very little) 
assumptions regarding the shape of the underlying mass distribution, and tries 
to infer it directly from the multiple image constraints. 

• Using the lens equation, by recalling that the source is the same for each 
multiple image family, one “solves” for the mass distribution. 

• A possible implementation might be setting a grid of NxN pixels on the lens one 
wishes to model, and then finding the best-fit value of each pixel. If there are 
say a dozen constraints in an average massive cluster, one can easily see that: 

• The problem with “free-form” techniques, despite their novelty, is that often, 
there are not enough multiple images to learn too much about the exact shape 
of the mass distribution (in a sense this can be thought of as a very low-
resolution result).



FREE-FORM MODELING

From Lefor et al. 2012,  
PixeLens (Saha et al. 2006)

THE SCIENCE OF LENSING



Köhlinger and Schmidt

RXJ1347

FREE-FORM MODELING

THE SCIENCE OF LENSING
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that best-fit the observed features. 
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• The second method is called “parametric”, in which certain parametric, or analytic, 
forms are assumed for the underlying mass distribution. 

• Often a certain analytic form is assumed for the galaxies, following some scaling 
reactions, and another form for the larger-scale dark matter haloes, where the total 
deflection field is the superposition of their contributions. 

• Also some model the gas, other structure along the line of sight, etc. 
• Once a general forms (i.e., functions) have been assumed for the different 

components, an iteration over different values can be made, searching of the values 
that best-fit the observed features. 

• The advantage is clear: relatively few constraints are needed to obtain the mass 
model. 

• Seems to work very well in both describing observed features in clusters and 
predict new ones (Treu+2016, Meneghetti+2015). This is what we will do today. 



THE SCIENCE OF LENSING
MASS MAPPING: STRONG LENSING

• Before continuing, I’ll mention there are also other methods that are not exactly 
either of the two definitions - such as Light-Traces-Mass, in which the dark matter 
shape is not analytical and does not follow a nice analytic form, but a smoothed 
version of the clusters galaxies’ luminosity distribution (Broadhurst+2005, 
Zitrin+2009). Or hybrid techniques that include parametric representation of the 
galaxies but model the dark matter as free form (e.g. WSLAP+ Diego et al., 
Sendra et al.). 

• OK - back to Parametric lens modeling. 



THE SCIENCE OF LENSING
PARAMETRIC LENS MODELING

•In essence, we wish to find the model (or parameter values describing the model 
in the framework of our function choice) that best describes the observations 

•The idea is clear - let’s suppose I have a set of points, and I want to fit a 
functional form to it - let’s say a linear line, y=ax+b. The goal is to find the best a 
and b values that give the minimum “typical” distance between y(x) and y’(x), 
where y’ is the model (or function’s) prediction. 

•Many of us know this as some sort of Least Squares, for example: 

•Now we wish to do the same, but to fit not a linear function, but another function 
we will construct, where the distance is the distances between the predicted 
image positions and the observed ones. Will talk about this soon. 



QUESTIONS SO FAR?



STEP 1: IDENTIFY MULTIPLE IMAGE CONSTRAINTS
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WE HAVE THE CONSTRAINTS. WHAT NOW?

assume we have photometric or spectroscopic redshifts for them. 



WE HAVE THE CONSTRAINTS. WHAT NOW?

We need a sophisticated initial guess of how the mass distribution might be roughly 
How? as we mentioned, let’s first take into account the material we see, the galaxies, then 

rely on, e.g., simulations to describe the dark matter.  
Then’ we’ll adopt some typical parameters and see what happens.



STEP 2: ACCOUNT FOR CLUSTER GALAXIES
A list of cluster members, their positions and luminosities

How? photometry (run SExtractor or alike), red sequence, photometric-redshifts maybe



PHOTOMETRY

THE SCIENCE OF LENSING

image from http://astroweb.cwru.edu/steven/Virgo/InitialCoreSexCU.html

http://astroweb.cwru.edu/steven/Virgo/InitialCoreSexCU.html


DONEC QUIS NUNC
CL0152

red sequence



THE RED SEQUENCE

E.g., Hammmer et al. 2010

THE SCIENCE OF LENSING



THE RED SEQUENCE

THE SCIENCE OF LENSING



STEP 2: ACCOUNT FOR CLUSTER GALAXIES
A list of cluster members, their positions and luminosities

How? photometry (run SExtractor or alike), red sequence, photometric-redshifts maybe

Now, we need to adopt some form for the galaxies - in real life we will want to take 
ellipticity into account, but here let’s go with this: a pseudo isothermal mass 

distribution:



STEP 2: ACCOUNT FOR CLUSTER GALAXIES

BUT - problem - if we need to account for rc, rcut, and sigma0 of each galaxy  
we will have also too many free parameters

—> need to adopt some physical or empirical assumptions 
—> can use scaling relations (e.g., from the fundamental plane)

Now, we need to adopt some form for the galaxies - in real life we will want to take 
ellipticity into account, but here let’s go with this: a pseudo isothermal mass 

distribution:

Jullo+2007

Mass of each galaxy will be in proportion to its luminosity



STEP 2: ACCOUNT FOR CLUSTER GALAXIES

Good - so now with only 3 parameters, we can approximate the contribution form cluster 
members. Let’s choose some reasonable typical values and see how this distribution looks 

like:

Now, we need to adopt some form for the galaxies - in real life we will want to take 
ellipticity into account, but here let’s go with this: a pseudo isothermal mass 

distribution:

Jullo+2007

3 parameters



THE RED SEQUENCE

THE SCIENCE OF LENSING



Choose center, dark matter halo form

STEP 3: ACCOUNT FOR DARK MATTER CONTRIBUTION

Can do also PIEMD! but Let’s do NFW

From Wikipedia

2 parameters: either concentration and mass, or, scale radius and central density value
But here we must account for ellipticity and PA, so 2 more

Six parameters so far.
Not only the surface mass density of the galaxies and DM are known analytically, also their 

deflection fields (which we constrain directly) and potential!



This means that alpha_total=alpha_galaxies+alpha_DM simply



THE DARK MATTER MAP

THE SCIENCE OF LENSING



THE COMBINED MASS MAP! (INITIAL GUESS!)

THE SCIENCE OF LENSING

I took some initial values for the dif params:



THE COMBINED MASS MAP! (INITIAL GUESS!)

THE SCIENCE OF LENSING

I took some initial values for the dif params: 
sigma_0_*~160 km/s 

r_c_*~0.3 kpc 
DM ell. ~ 0.3 

DM PA~45 deg 
DM concentration~6 
DM mass ~ 3*10^14



THE COMBINED MASS MAP! (INITIAL GUESS!)

THE SCIENCE OF LENSING



MINIMIZATION

THE SCIENCE OF LENSING

So, we have a lens model.  
Now how do we know if it is reasonable, or how good it is?  
and how do we know of we can better (i.e., if minimized?)

—> send again to image plane via lens equation (ray tracing) (why?) 
                 —>quantify distance of multiple images from real ones

—> optimize parameters to get minimum distance

—> Lens multiple images using lens equation, get source position (ray tracing)



MULTIPLE IMAGE PREDICTION

THE SCIENCE OF LENSING

RMS~5” (a lot!)

chi^2~1800

DOF~22-6=16
chi^2/DOF>~100

Could probably do better
—> proper minimization



THE COMBINED MASS MAP! (INITIAL GUESS!)

THE SCIENCE OF LENSING

•How to optimize/minimize the parameter values? 

•1. “By Hand”? 
•2. Grid method 
•3. More efficient optimization options



THE SCIENCE OF LENSING
PARAMETRIC LENS MODELING

•In essence, we wish to find the model (or parameter values describing the model 
in the framework of our function choice) that best describes the observations 

•The idea is clear - let’s suppose I have a set of points, and I want to fit a 
functional form to it - let’s say a linear line, y=ax+b. The goal is to find the best a 
and b values that give the minimum “typical” distance between y(x) and y’(x), 
where y’ is the model (or function’s) prediction. 

•Many of us know this as some sort of Least Squares, for example: 

•Now we wish to do the same, but to fit not a linear function, but another function 
we will construct, where the distance is the distances between the predicted 
image positions and the observed ones. 



THE SCIENCE OF LENSING
PARAMETRIC LENS MODELING

Optimization/Minimization

•We need a way to numerically minimize the model’s deviations from the 
data. 

•In general, one can go over many different a and b parameters, for 
each combination check what is the sum/average/etc. of deviations, and 
then choose the “best” a and b as those that yielded the minimum 
overall deviation. We will want to use such a method. 

•There are various ways to draw the different a and b values to probe 
which are those that result minimum deviation. A simple procedure, for 
example, can be to go over some a_min to a_max in fixed discrete steps 
and over b_min to b_max in fixed discrete steps, so that the 2D 
parameter space is being divided essentially into a grid, where we wish 
to find the minimum deviation as a function of a and b. Example:



From Mathworks/ Matlab site

THE SCIENCE OF LENSING
PARAMETRIC LENS MODELING

Optimization/Minimization



THE SCIENCE OF LENSING
PARAMETRIC LENS MODELING

Optimization/Minimization
•We can adopt the “grid minimization” method and run over various 

discrete steps and find the best-fit one. But in fact there are much more 
efficient algorithms to sample the parameters space and get the best-fit 
values. You may have heard about some of these method such as 
downhill simplex, Monte Carlo Markov Chain (MCMC), stimulated 
annealing, and so forth. 

•I am using MCMC with a chi^2 (ie maximum likelihood) estimator for the 
goodness of fit (or deviation from the observed multiple image 
locations). 



THE SCIENCE OF LENSING
PARAMETRIC LENS MODELING

Source- versus image plane Minimization

•But we have to be careful. then something funny will happen if I do this 
naively in the source plane - I will get a very strong lens model that tries 
to focus everything into a single point. So this procedure is not good 
because it biases the solution.  

•Instead I need to lens the sources back to the image plane and compare 
to the image position there.



THE SCIENCE OF LENSING
COMMENT: RAY TRACING

•Before we said that we send the images to the source plane, and then we lens 
back through the lens to the image plane, via the lens equation.  

•Is this really that simply? 
•theta=beta+alpha*D 
•but alpha is known in the image plane, not source plane 
•this means one has to run over all the image plane and calculate alpha at each 

point (time consuming) 
•Only pixels that fulfill the lens equation (meaning mapped back to the source) 

are counter images
http://blog.waz.com.br/2018/07/23/ray-tracing-tecnologia-para-graficos-ainda-mais-realisticos/
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•Before we said that we send the images to the source plane, and then we lens 
back through the lens to the image plane, via the lens equation.  

•Is this really that simply? 
•theta=beta+alpha*D 
•but alpha is known in the image plane, not source plane 
•this means one has to run over all the image plane and calculate alpha at each 

point (time consuming) 
•Only pixels that fulfill the lens equation (meaning mapped back to the source) 

are counter images



THE COMBINED MASS MAP! (INITIAL GUESS!)

THE SCIENCE OF LENSING

• How to optimize/minimize the parameter 
values? 

• 1. “By Hand”? 
• 2. Grid method 
• 3. More efficient optimization options

from: http://bebi103.caltech.edu.s3-website-us-east-1.amazonaws.com/2015/tutorials/
t4b_param_est_with_mcmc.html

http://bebi103.caltech.edu.s3-website-us-east-1.amazonaws.com/2015/tutorials/t4b_param_est_with_mcmc.html
http://bebi103.caltech.edu.s3-website-us-east-1.amazonaws.com/2015/tutorials/t4b_param_est_with_mcmc.html


Jullo+2007

MINIMIZATION AND THE BAYESIAN APPROACH

THE SCIENCE OF LENSING



MULTIPLE IMAGE PREDICTION: BEST FIT MODEL (UNDER CHOICES MADE)

THE SCIENCE OF LENSING

RMS~1.3” (not bad)

chi^2~165

DOF~22-6=16
chi^2/DOF~10

a bit high, but not that off
(need to continue minimization,  
probe different model options)
depends on chosen sigma_pos!



MULTIPLE IMAGE PREDICTION: BEST FIT MODEL (UNDER CHOICES MADE)

THE SCIENCE OF LENSING

Actually we can see a better comparison:

Acebron+2019



CALCULATE LENS MODEL PROPERTIES

THE SCIENCE OF LENSING

• Now that we have the lens model  - let’s see how we calculate each of the properties: 
• Extremely easy! 
• Say we start with the deflection field that we fit to the data (alpha_total).  
• From this alpha_vector (we have alpha_x and alpha_y separately), kappa, the mass  

density is simply obtained by kappa=0.5*Div(alpha) 
• magnification=abs(1/(1-kappa*2+da_x*da_y-da_x_dy*da_y_dx)); where 
• [da_x_dy,da_x_dx]=gradient(alpha_x); 
• [da_y_dy,da_y_dx]=gradient(alpha_y); 
• Shear:  
gamma1=0.5*(da_x_dx-da_y_dy); 
gamma2=da_y_dx; 
gamma_abs=sqrt(gamma1.^2+gamma2.^2);

• Time Delay:  



THE SCIENCE OF LENSING
MAGNIFICATION BIAS

so now that we can do ray tracing, let’s try to get the magnification bias together. 
Let’s random sources based on a typical Schechter luminosity function, in the 

source plane, lens them through the lens, and see what will happen to the number 
counts given a certain flux limit



THE SCIENCE OF LENSING
LF THROUGH LENSING: HOW TO?

•Suppose we wanted to random a LF, and see the effect of lensing on it. How 
would we do it? 

•Let’s make a simple case with a power-law - N(S)=AS^-beta 
•The idea would be to (i) random sources from the luminosity function and make 

sure we get what we started with; (ii) random positions in SP and if outside 
lensed area, do not count source, if in, multiply the flux by the magnification at 
that position; and (iii) compare to what we started with.  

•Easy? 
•How would you do (i)?



LENSING OF HIGH REDSHIFT GALAXIES

✤ To see this let’s relens back one FOV we modeled:

MAGNIFICATION BIAS

Only 44% of original FOV is effectively observed in this case! 
(not full HST FOV was modeled/lensed, smaller)
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•Suppose we wanted to random a LF, and see the effect of lensing on it. How 
would we do it? 

•Let’s make a simple case with a power-law - N(S)=AS^-beta 
•The idea would be to (i) random sources from the luminosity function and make 

sure we get what we started with; (ii) random positions in SP and if outside 
lensed area, do not count source, if in, multiply the flux by the magnification at 
that position; and (iii) compare to what we started with.  

•Easy? 
•How would you do (i)?



THE SCIENCE OF LENSING
HOW TO RANDOM SOURCES FOR A DISTRIBUTION

•Suppose you have a distribution F(x) you wish to draw from (PDF) 
•Get the CDF 
•Normalize to range [0,1] 
•Uniformly generate random numbers, X, between [0,1] 
•Gather CDF values at the positions corresponding to X 
•This makes your drawn distribution

A trick - the inversion method, generally speaking

Data
 sci

ence!
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HOW TO RANDOM SOURCES FOR A DISTRIBUTION

•Suppose you have a distribution F(x) you wish to draw from (PDF) 
•Get the CDF 
•Normalize to range [0,1] 
•Uniformly generate random numbers, X, between [0,1] 
•Gather CDF values at the positions corresponding to X 
•This makes your drawn distribution (simple!)

A trick - the inversion method, generally speaking Data
 sci

ence!

Fig from : https://web.mit.edu/urban_or_book/www/book/chapter7/7.1.3.html 
see for more details

https://web.mit.edu/urban_or_book/www/book/chapter7/7.1.3.html


BRIEF SUMMARY OF THE THREE TALKS!

TAKE HOME

• Lecture I: basics of lensing. Main 
science cases - DM, cosmology, 
and high redshift galaxies. Based 
on simple equations (lens 
equation, alpha, relation to kappa).



TAKE HOME

• All background is lensed to some extent 
• Lensing effects and size of lens depend on mass and on distances, and 

position of source 
• By how much something is lensed? Deflection angle formula for point mass: 

• Alpha is constrained with multiple images through lens equation (SL): 
• Alpha is then related to the mass distribution through:  
• Shear is constrained in WL regime through ellipticity measurements, also 

invertible to kappa 
• Magnification is given by  
 

SUMMARY



BRIEF SUMMARY OF THE THREE TALKS!

TAKE HOME

• Lecture II: lensing of high redshift 
galaxies. Pushing towards fainter 
magnitudes. Better internal 
details. Luminosity function, But 
tradeoff, magnification bias, 
completeness simulations.



LENSING OF HIGH REDSHIFT GALAXIES

✤ To see this let’s relens back one FOV we modeled:

MAGNIFICATION BIAS

Only 44% of original FOV is effectively observed in this case! 
(not full HST FOV was modeled/lensed, smaller)



Bradley+ 2014

LENSING OF HIGH REDSHIFT GALAXIES
MAGNIFICATION BIAS



BRIEF SUMMARY OF THE THREE TALKS!

TAKE HOME

• Lecture III: Building a lens model is 
something that each of you can do 
(easily, even , after some guidance/
trials). Just wanted to give a taste of 
the general idea. 

• To do: generate some power law LF, 
see how slope changes by lensing…



Thank you!


