First Quasars and Supermassive Black Holes

Xiaohui Fan

University of Arizona

twitter: @xfan_astro

From seeds to supermassive black holes

Outline

- Lecture 1: quasar and supermassive black hole basics
- Lecture 2: the highest redshift quasars and the first supermassive black holes
- Lecture 3: quasars as first light probe: reionization and galaxy/SMBH co-evolution

The First Quasar Discovered z=0.158

- Quasar: quasi-stellar radio source
- QSO: quasi-stellar object
- Most QSOs are radio-quiet
- 1970s: quasar redshift debate

SDSS DR12 (2016) : 300,000 quasars

Credit: Franco Alberti

Observational Properties of quasars/AGNs

- Textbook definition
 - Small angular sizes (compact)
 - Cosmological distance
 - High luminosity?
 - Broad-band continuum emission
 - Emission Lines indicative of hard ionizing source
 - Variability
 - Polarization (subset)
- Combination of these properties support the black hole paradigm
- AGN surveys utilize one or more of these properties

Challenge I: quasars are multi-wavelength, multiscale phenomena

Challenge II: We do not observe the central engine

"Sometimes you can't stick your head in the engine, so you have to examine the exhaust"

-- D. E. Osterbrock

Challenge III: Quasars outshine their host galaxies by large factor

Quasar energy source

- Quasar variability: size of solar system
- High luminosity: >10^11 L_sun
- Resulted in "great debate" on the nature of quasar redshift in 1970s – which lingered until this day
- Radiative efficiency: $L = \eta dM/dt c^2$
 - H-burning: $\eta = 0.007$
 - How about accretion to compact object?

Radiative Efficiency

• Luminosity $L = dE/dt = \eta \dot{M}c^2$.

• Energy Conversion $L = |d(PE)/dt| = GM/R\dot{M}$

• Schwarzschild radius $R_s = 2GM/c^2$

- Last stable orbit: a few R_s $\eta \sim 0.1$.
- Kerr BH: radiative efficiency could be $\sim 0.2 0.3$

Eddington Limit

$$F_{rad} \leq F_{grav},$$
$$\frac{\sigma_T L}{4\pi c r^2} \leq \frac{GMm_p}{r^2}.$$

$$L_E = \frac{4\pi GMM_pc}{\sigma_T} \sim 3\times 10^4 \frac{M}{M_\odot} L_\odot \sim 1.26\times 10^{38} \frac{M}{M_\odot}.$$

- quasar: L~10^44
- BH mass: 10^8 M_sun

Eddington Timescale

$$L_E = \eta \dot{M} c^2,$$

 $L_E = rac{4\pi G c m_p}{\sigma_T} \dot{M} = \eta \dot{M} c^2.$

$$\dot{M} \sim 2.2 \times 10^{-8} M \mathrm{yr}^{-1} = (\mathrm{M/t_E}),$$

$$M = M_0 \exp(t/t_E).$$

Eddington timescale = 4.4×10^7 years if η is 0.1

Typical Quasar

- Luminosity 10^44 erg/s
- BH mass 10^8 M_sun
- Accreting : few M_sun per year
- Mass doubling time: few tens of million years
- High-redshift? Limit on the pace of BH growth

"It's black, and it looks like a hole. I'd say it's a black hole."

Black Hole Mass M_{BH} ~ v² R /G

18

BH at the Galactic Center

Kormendy and Ho 2013

Measure BH mass in normal galaxies

- Individual stars: only Milky Way
- Stellar dynamics: solve Boltzmann equation

$$M(r) = \frac{V^2 r}{G} + \frac{\sigma_r^2 r}{G} \left[-\frac{d \ln \nu}{d \ln r} - \frac{d \ln \sigma_r^2}{d \ln r} - \left(1 - \frac{\sigma_\theta^2}{\sigma_r^2}\right) - \left(1 - \frac{\sigma_\phi^2}{\sigma_r^2}\right) \right],$$

- Gas dynamics: thin rotating disk

M-sigma relation

$$\log\left(\frac{M_{\bullet}}{10^9 M_{\odot}}\right) = -(0.266 \pm 0.052) - (0.484 \pm 0.034)(M_{K,\text{bulge}} + 24.21); \text{ intrinsic scatter} = 0.31; (2)$$
$$\log\left(\frac{M_{\bullet}}{10^9 M_{\odot}}\right) = -(0.510 \pm 0.049) + (4.377 \pm 0.290)\log\left(\frac{\sigma}{200 \text{ km s}^{-1}}\right); \text{ intrinsic scatter} = 0.29. (3)$$

Kormendy and Ho 2013

M_bh vs. M_bulge

What BH mass doesn't correlate with?

- Be very careful about which M and which sigma!
- It only works for bulge of the galaxy
- BH mass doesn't correlate with galaxy total mass (if there is such a thing)
- BH mass doesn't correlate with galaxy disk mass
- M-sigma probably breaks down at the highest and lowest mass end (more on that in Lecture 2)
- Redshift evolution (later)

Measure BH masses in quasars and AGN

- Problem 1: can not resolve sphere of influence (too far)
- Problem 2: can not detect host galaxy light; stellar light or emission line (too bright)
- For luminous quasars: only observables are broad emission lines and continuum; both comes within the BH sphere of influence
- Answer: reverberation mapping

The average spectrum of quasars

- 1. Hot (blue) continuum
- 2. Broad emission lines (~5000 km/s) type-1
- 3. Narrow emission lines (~500 km/s) type-2 (narrow-line only)

Reverberation Mapping

 Emission line variation follows that of continuum, with a time delay of 14 days for H-beta, and 3 days for HeII, due to travel time across the emission line regions.

Reverberation-Based Masses

"virial product" (units of mass)

$$M_{BH} = \int_{C} \frac{R \Delta V^2}{G}$$

set by geometry and inclination (everything that we don't know)

Observables:

- R = BLR radius (from reverberation mapping(
- $\Delta v = emission$ line width

Evidence for a Virialized BLR

- Gravity is important
 - Broad-lines show virial relationship between size of line-emitting region and line width, $r \propto \sigma^{-2}$

B. Peterson

The AGN M-sigma relation

- no independent absolute calibration
- Assume zeropoint of quiescent galaxy calibration: f=4.19±0.10
- intrinsic scatter of the relation is ~0.4 dex

Current status of reverberation BH masses: the SDSS RM project

- Reaching cosmological distance and high luminosity
- requiring year/decade long campaigns for high-z, high-luminosity sources
- more economical way for quasar BH-mass measurements?

Virial Mass Estimates

 $M_{BH} \sim v^2 R_{BLR}/G$

• Reverberation Mapping: **R**_{BLR}=CT

- Radius Luminosity Relation: $R \sim L^{\beta}$
- Scaling Relationships:

 $M_{BH} \propto FWHM^2 \ L^{\beta}$

- Single epoch spectroscopy sufficient
- works for high-z, high-L sources
- But what is β?

– Photoionization predicts: $R \sim L^{1/2}$

Bentz+2013

Virial BH mass: Which line to use

- H-beta (4861A): well calibrated. But doesn't work at high-z
- MgII (2800A): calibration OK. Accessible at high-z, but in near-IR
- CIV (1549): strongest line. Affected by AGN winds, accessible at high-z. Controversial.

B. Peterson

Estimating AGN Black Hole Masses

Reverberation Masses: Separating Fact from Fiction

- Reverberation-based masses are *real* mass measurements
- Reverberation masses are <u>not high-precision masses</u> (yet?) $M_{\rm BH} = f c \tau \sigma^2/G$
 - ~30% uncertainty in precision
 - ~35% uncertainty in zero-point calibration
 - ~0.5 dex (factor of 3) uncertainty in accuracy for any given AGN