Reionization + Galaxy Formation; First Stars; 21-cm Cosmology

Rennan Barkana רנן ברקנא דוג אוניברסיטת תל-אביב איז אוניברסיטת על-אביב

Cosmology

Robertson-Walker metric: (R, θ, ϕ) Scale factor: a(t)

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dR^{2}}{1 - kR^{2}} + R^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\phi^{2} \right) \right]$$

Friedmann equation:

Energy conservation:

Critical density:

 $d(\rho a^3) = -pd(a^3)$

 $H^2(t)=\frac{8\pi G}{3}\rho-\frac{k}{a^2}$

$$H(t) = d \ln a(t)/dt$$

$$\rho_C(t) \equiv \frac{3H^2(t)}{8\pi G} \qquad \qquad \Omega \equiv \frac{\rho}{\rho_C}$$

Friedmann equation:

$$\frac{H(t)}{H_0} = \left[\frac{\Omega_m}{a^3} + \Omega_\Lambda + \frac{\Omega_r}{a^4} + \frac{\Omega_k}{a^2}\right]^{1/2}$$
$$\Omega_0 = \Omega_m + \Omega_\Lambda + \Omega_r$$
$$\Omega_k \equiv -\frac{k}{H_0^2} = 1 - \Omega_0$$

Cosmological Pie

Dark Matter: 26.2%

Linear Perturbation Theory

Linear Power Spectrum

Inflation: Gaussian random field

Non-linear Collapse

Galactic halos

> Barkana & Loeb 2001

> > 10

Hierarchical Galaxy Formation:

Credits: Matthias Steinmetz

http://www.aip.de/People/MSteinmetz/E/movies.html

Hierarchical Galaxy Formation:

Credits: Matthias Steinmetz

http://www.aip.de/People/MSteinmetz/E/movies.html

The universe today:

http://www.mpa-garching.mpg.de/galform/millennium/

Formation of a galaxy cluster:

http://www.mpa-garching.mpg.de/galform/data_vis/

The First Star (simulations)

Hirano et al. (2014)

Strong Clustering of Early Galaxies

 δ_{c}

 δ_{c}

Press & Schechter 1974 Bardeen, Bond, Kaiser 1984 Bond, Cole, Efstathiou, & Kaiser 1991 Cole & Kaiser 1989 Mo & White 1996

The First Star (theory)

Simulations: Yoshida et al. (2003)

RB & Loeb (2004)

Naoz, Noter, & RB (2006)

 $z \sim 65 (t \sim 30 Myr)$

Compare:

 $z \sim 30 (t \sim 100 Myr)$

25,000 Mpc

Small galaxies

Large scales

The First Star (theory)

The second star: feedback

Naoz, Noter, & RB (2006)

Cosmic History

21-cm Cosmology: The Spin Temperature

 $\lambda = 21 ext{ cm}$ $u = 1420 ext{ MHz}$ $E = 5.9 imes 10^{-6} ext{ eV}$ $rac{E}{k_B} = T_* = 0.068 ext{ K}$

 $\tfrac{n_1}{n_0} = 3\exp\left\{-\tfrac{T_*}{T_S}\right\}$

What determines T_S ?

What determines T_s ?

http://www.astr.ua.edu/keel/agn/forest.html

Quasar at z=6.3

Becker et al. 2001

Atomic Physics: 21-cm Line

Foregrounds

$\begin{array}{l} T_{sky} \sim 200 \text{ K} \\ (\nu = 170 \text{ MHz}) \end{array}$

=> Large-Scale Fluctuations

 $\delta T_{\rm b} = \langle T_{\rm b} \rangle \sqrt{\frac{k^3 P(k)}{2\pi^2}}$

 $T_{current} \sim 40 \text{ mK}$

Global 21-cm Experiments

SARAS

EDGES high

Interferometer Experiments

Cosmic Reionization

RB & Loeb 2004 Inside-out reionization ← 100/h Mpc = 0.5° Mellema et al. 2006 Furlanetto, Zaldariagga, Hernquist 2004

Cosmic History

RB 2016, Physics Reports

21-cm Cosmology: Cosmic dawn

Madau, Meiksin & Rees 1997: Cosmic Dawn (Ly-α and heating)

RB & Loeb 2005: Ly-α fluctuations: z~20-30 Pritchard & Furlanetto 2007: Temperature fluctuations (X-ray heating)

Semi-numerical Simulation

21cmfast, my group, ...

(Itamar Reis)

> In each pixel:

- Model + simulation results + free parameters
- Halo abundance, cooling, star formation
- Ly-α radiation, X-rays, UV
- > Numerically:
 - Sum up Ly-α and X-ray intensity, reionization
 - 21-cm image, power spectrum, global signal

Hard X-rays

Soft X-rays

z = 12.1

Fialkov, RB & Visbal Nature 2014

Baryon – Dark Matter Relative (Streaming) Velocity Tseliakhovich & Hirata 2010

acoustic oscillations

gravity

Baryon – Dark Matter Relative (Streaming) Velocity Tseliakhovich & Hirata 2010

> acoustic oscillations gravity

1. $|V_b - V_{cdm}|^{r.m.s.} \sim 30$ km/s at $z_{rec} \sim 5$ c_s

2. Varies on large scales

3. BAOs

 $M = 8 \times 10^5 M_{\odot}$

Global 21-cm

Cohen, Fialkov, RB, & Lotem 2017

Fialkov

5000 4000 3000 1000a) Observed spectrum 0.2 0.2 0.2 0.2 0.2 0.2 RMS = 0.087 K MS = 0.087 K RMS = 0.087 K RMS = 0.087 K RMS = 0.025 K RMS = 0.025 K

Bowman et al. 2018

EDGES-Low

EDGES-Low

Bowman et al. 2018

EDGES-Low

Max absorption:

- No reionization.
- Saturated coupling.
- No heating.

RB, Nature 2018

Gas is colder than adiabatic cooling =>

Something cooled it down (heating is easy) =>

X must be even colder (than 5 K at z=17) => (Cold) dark matter

Dark matter interactions (Cooling: Dark ages) Cosmic dawn (WF coupling)

PHYSICAL REVIEW D 89, 023519 (2014)

Constraining dark matter-baryon scattering with linear cosmology

Cora Dvorkin^{*} and Kfir Blum[†] Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, New Jersey 08540, USA

Marc Kamionkowski[‡] Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA (Received 22 November 2013; published 27 January 2014)

PHYSICAL REVIEW D 90, 083522 (2014)

Effects of dark matter-baryon scattering on redshifted 21 cm signals

Hiroyuki Tashiro,¹ Kenji Kadota,² and Joseph Silk^{3,4,5}

PHYSICAL REVIEW D 92, 083528 (2015)

Heating of baryons due to scattering with dark matter during the dark ages

Julian B. Muñoz, Ely D. Kovetz, and Yacine Ali-Haïmoud

 $\sigma \propto v^n$

Large at small v => n=-4 (Rutherford/Coulomb)

Cosmic dawn: min T/v

The streaming velocity!

RB, Nature 2018

Alternative explanation

Bowman et al. 2018 Feng & Holder 2018

10% of extragalactic radio excess ARCADE-2: 2006 NASA balloon, 3-90 GHz Residual with $v^{-2.6}$

Subrahmanyan & Cowsik 2013

Realistic Galactic modeling => no excess.

Need z=20 radio background at MW level, without X-rays. Mirocha & Furlanetto 2018: $\varepsilon \times 10^3$ RMS fluctuation ~ 140 mK 100 Mpc at z=17: 30'

DM cooling fluctuations only

Baryon - dark matter velocity

BAOs

RB, Nature 2018

Range (Global)

Fialkov, RB, Cohen, PRL 2018

Fialkov, RB, Cohen, PRL 2018

Particle physics models

Munoz & Loeb 2018

Alternative explanation

k=0.1 Mpc⁻¹

Fialkov & RB 2019

Alternative explanation

Fialkov & RB 2019

10³