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CMB

COBE '93-' 96
WMAP '06-'09
Planck ‘15-'18

Inflation provides our best theory for the initial
conditions of our Universe. Presently the CMB
offers the best constraints on many cosmological
parameters, as well as inflationary models

INFLATION
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Inflation provides our best theory for the initial
conditions of our Universe. Presently the CMB
offers the best constraints on many cosmological
parameters, as well as inflationary models

INFLATION
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More fundamental tests of inflation depend
on two signals which are very difficult to
detect: B-mode polarization from GWs, and
non-Gaussian signatures

CMB

Seljak & Zaldarriaga ‘97
Kamionkowski et al. '97
Maldacena ‘02

INFLATION
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CMB

POLARBEAR l E e _ Kovac et al. "14

| Planck Collab. 18
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Initial excitement about a possible detection
of B-modes from gravity waves ended in
disappointment...

INFLATION
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CMB

Verde et al. ‘00
Maldacena '02
Planck ‘18
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.. and the CMB constraints on primordial
non-Gaussianities are still relatively weak,
leaving inflation in a sort of limbo.

INFLATION
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CMB

Planck Collab. 18

But more importantly, the CMB, and Planck
in particular, imposed for the first time
high-precision constraints on many
cosmological parameters...



COSMOLOGY IN A NUTSHELL

FROM FUNDAMENTAL PHYSICS TO ASTROPHYSICS

« T ‘-,:;’ :

CMB

Planck Collab. 18

.
R AL Bar, .
T 3Eh =35
L
< ¥ ; i

0.13  0.93

... as well as some fundamental physics parameters:
strong evidence for cold dark matter, near-zero
spatial curvature, neutrino masses and effective
number of relativistic d.o.f.
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DR14 quasars

The CMB also sets the stage for the expansion
history, with precise predictions that can be checked
with distance measurements at low redshifts
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LSS

Peebles & Yu '70
Zel'dovich '72

Vogelsberger et al. "14

CMB

After decoupling, the initial conditions are set
for the Universe to start forming structures,
from dark and baryonic matter
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Starting from these initial conditions, N-body
simulations tell us that on very large scales (>100
Mpc) the Universe should look like a web of
structures: sheets, filaments, nodes, halos, etc.

LSS

MultiDARK Collab.
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Of course, what we actually observe are
baryonic components: galaxies, quasars,
gas clouds (H), supernovas...

AND BY THE WAVY...
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DARK ENERGY OR MODIFIED GRAVITY?

DARK ENERGY

Densely, rapidly Sparsg, slowly
deceleratin decelerzting
universe universe accelerating universe

Declerating, then

Supernovas, in particular, gave us the first hints that
something strange was going on. Apparently, for
about half of the age of the Universe, its expansion
decelerated; but then, it started to accelerate

Riess et al. '98
Perlmutter et al. ‘98

LSS
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DARK ENERGY OR MODIFIED GRAVITY?
= w="2 = w4+ w,(1 - a) DARK ENERGY

P

acceleration

i Planck TT,TE,EE+lowE+Ilensing
- ' }BAO/RSD+WL LSS

BOSS Collab. 17
Planck Collab. 18

Since acceleration takes place in the late Universe, the
CMB is not a powerful test. However, supernovas and
LSS enable accurate phenomenology of the recent
accelerated phase
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DARK ENERGY OR MODIFIED GRAVITY?

MODIF. GRAVITY
== \‘ visible matter o/ LSS

~—25%

oL
70% dark
D energy

84%

dark matter

According to existing data, only a small fraction of our
Universe is made of visible matter: if dark energy
accounts for cosmic acceleration, it makes up ~70%
of the total. And, of course, there is still dark matter...
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DARK ENERGY OR MODIFIED GRAVITY?

= > DARK ENERGY
MODIF. GRAVITY
LSS

“THE MOST PROFOUND
MYSTERY IN BASIC SCIENCE”
-F. WILCZEK

“THE #1 PROBLEM”
o -E. WITTEN

Einstein’s Cosmological Constant (A) is still the simplest
explanation, and is consistent with all data. However, it
suffers from a huge naturalness problem, compared
with the vacuum energies arising from the SM
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DARK ENERGY OR MODIFIED GRAVITY?
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SAME MATTER,
DIFFERENT GRAVITY

I & 1
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Both dark energy and modified gravity can describe
the same expansion history (w/ identical Friedmann
equations), but changing gravity’s laws also affects
the Poisson equation and the geodesic equations
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DARK ENERGY OR MODIFIED GRAVITY?
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Today one of the greatest challenges in cosmology is
to produce accurate 3D maps of the Universe, where
we can measure cosmic acceleration, test gravity on

large scales, understand how galaxies form and evolve,

and even search for the influence of neutrinos

DARK ENERGY

MODIF. GRAVITY

LSS



LARGE-SCALE STRUCTURE

THE VISIBLE AND THE INVISIBLE WEBS

1=22.36
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THE VISIBLE AND THE INVISIBLE WEBS

Initially, density fluctuations are very small (dp/p ~ 10-4), and in this

linear regime, structure formation proceeds at a moderate pace
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THE VISIBLE AND THE INVISIBLE WEBS

However, soon the linear regime fails to describe the growing
concentration of matter in the initially overdense regions.
Gravity is a relentless force driving inequality in the Universe.
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THE VISIBLE AND THE INVISIBLE WEBS

quasars &
AGNs

£

Dark matter is 5-6x more abundant than baryonic matter, therefore
it often determines the gravitational wells where we also find
luminous baryons— galaxies of all kinds, quasars, gas clouds, etc.
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THE CLUSTERING OF MATTER

Galaxies serve as tracers of the dense regions of
the Universe, where we find more matter.
Although their absolute positions are irrelevant,
their relative positions tells us about clustering

X ¥ CMASS
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BOSS, Sanchez et al. 2017
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ECHOS FROM THE PAST

= = baryons

single density peak correlation function
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D. Eisenstein

The feature in the correlation function at r~105 h-' Mpc arises from the acoustic
horizon for the photon-baryon fluid during recombination (decoupling), at z~1100.

In Fourier and Harmonic Space this translates into oscillations, hence the name:
Baryon Acoustic Oscillations (BAOs)
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OBSERVING THE BARYON ACOUSTIC OSCILLATIONS

- A7 =dy Af

BAOs are a statistical standard ruler:
we expect extra clustering on scales ‘
A\

Leao=(147.7x0.7) Mpc. |
Planck 2018 |
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REDSHIFT-SPACE DISTORTIONS
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The radial positions to distant galaxies are inferred This is the origin of the redshift-space distortions
from their redshifts. Hence, we cannot distinguish (RSDs) in the 2-pt correlation function and

between the Hubble flow and the peculiar velocities power spectrum, which become anisotropic
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STRUCTURE FORMATION AND THE EQUIVALENCE PRINCIPLE

Fourier space
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Percival & White '09

Raccanelli et al. '13
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STRUCTURE FORMATION AND THE EQUIVALENCE PRINCIPLE

“[— ACDM-GR~ =05 Peculiar velocities, RSDs
g [
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< Zarrouk et al., 1801.03062

The matter growth rate (f) is partly degenerate with galaxy
bias (b,), and both are degenerate with the amplitude of the
power spectrum (o3)
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THERE ARE MANY TRACERS 0F LARGE-SCALE STRUCTURE
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LARGE-SCALE STRUCTURE

THERE ARE MANY TRACERS OF LARGE-SCALE STRUCTURE...

By contrasting the clustering of many
tracers of large-scale structure we can
beat cosmic variance, and measure

some parameters with high accuracy:

Py = (by + fuz)Pn(k; 2)
Py = (b + Fu2)Pm(k; 2)

P _ (it f 1g)
Py (ba+ fug)

The key is high numbers of distinct
types of tracers: red galaxies, blue
galaxies, emission-line galaxies,
quasars, neutral H regions (21cm);
DM halos; ...

-

Seljak ‘08 , Gil-Marin et al. "11
RA.'12,R.A. & Leonard ‘13

R.A. Secco & Loureiro ‘16
Bull etal.” 16, Fonseca et al.’'16




OBSERVATIONS

THE OBSERVABLE UNIVERSE

P. Budassi




OBSERVATIONS

SURVEYS: PAST, PRESENT AND FUTURE

Recent past and near future
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Spectrograph

» p Time Enee th: Big Eang
Q S {Billiows ¢/ Yoars)

v

Surveys of the future

euclid
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PFS: PRIME FOCUS SPECTROGRAPH o
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OBSERVATIONS

DESI: DARK ENERGY SPECTROSCOPIC INSTRUMENT
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OBSERVATIONS

DESI, WEAVE, 4MOST)

FIBER SPECTROGRAPHS (..., PFS
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https://youtu.be/IH-Sn0b7zwA

R J-PAS
OBSERVATIONS A ML

J-PAS (FIRST LIGHT: FEW MONTHS!)

GOBIERNO MINISTERIO
‘% DE ESPANA DE ECONOMIA
Y COMPETITIVIDAD

A FAPESP @__FAPEI_U W FiNEP

SAO PAULO RESEARCH FOUNDATION & Pesquisa do Estado do Rio de Janeiro Finoncadera de Estudos e Projetos




OBSERVATIONS

J-PAS: IMAGING MEETS SPECTROSCOP

No spectra: pseudospectra
imaging in 54 narrow-band filters (+BBs)

< everything to r<~23

AEGIS001 - RA=214.2461 DEC=52.730 GALAXY |

« SDSS (smoothed)
s mini-JPAS (BB)
—o= Mini-JPAS (NB)
J-PLUS (BB)
J-PLUS (NB)

600 700
wavelength (nm)

!

B

< Dark energy/MoG
<> Galaxy evolution
<~ LSS (BAOs & RSDs)
< Supernovas

<> Clusters

=~ QSOs

Benitez et al. '09, ‘14
R.A.etal. '11, ...
http://j-pas.org
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OBSERVATIONS

J-PAS: QUASARS AS SEEN BY 54 NARROW-BAND FILTERS
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OBSERVATIONS

J-PAS: MASSIVE, BILLIUN OBJECT SURVEY
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~105 objects/degree?

Huge challenge — even with 56 narrow-band filters

 Classical techniques (e.g., template matching)
» Machine learning (collab. with Comp. Sc. Depts.)

J-PAS: fully probabilistic catalogs

OBJ (RA, DEC):

—————

— p(gal)
— p(S0) = p(z|SO)
— p(EO) = p(z|EO)

— p(gso)
= p(Q) = p(z|Q)

— p(junk)



OBSERVATIONS

NEW DATA, NEW TOOLS

Optimal methods to combine all galaxies, QSOs, halos etc.

VIPERS — Guzzo et al. 16
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R.A., Secco & Loureiro ‘16
Sato-Polito, Montero-Dorta, R.A., Prada & Klypin ‘18
Montero-Dorta, R.A., Granett, Guzzo et al., to appear ‘19



OBSERVATIONS

J-PAS: FORECASTS ON GR V. MODIFIED GRAVITY

BOSS galaxies
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J-PAS Collab. 19 [Aparicio-Villega, Maroto, R.A. et al.]
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J-PAS: FORECASTS ON GR V. MODIFIED GRAVITY
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OBSERVATIONS

J-PAS: FORECASTS ON GR V. MODIFIED GRAVITY

Only PFS can access z>2 with galaxies
(even Euclid cannot)

PFS
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J-PAS Collab. 19 [Aparicio-Villega, Maroto, R.A. et al.]
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CONCLUSIONS

LARGE-SCALE STRUCTURE MEETS FUNDAMENTAL PHYSICS

4+ Cosmic acceleration is a fundamental challenge: either dark energy or
modified gravity will shake the foundations of physics

4 Surveys targeting cosmic acceleration or inflation are
also superb tools to understand galaxy formation =~ _——————-

4+ 3D maps of the Universe are progressing
fast: by combining optical, IR and 21cm,

by ~2030 we will have mapped ~2/3 of
the volume of the observable Universe! /| &

yes CEoeR 4



